Vol. 123

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2011-12-22

The Far Field Transformation for the Antenna Modeling Based on Spherical Electric Field Measurements

By Ping Li and Li Jun Jiang
Progress In Electromagnetics Research, Vol. 123, 243-261, 2012
doi:10.2528/PIER11102301

Abstract

According to the uniqueness theorem, the far field radiation pattern of radiators such as antennas can be determined from the measured tangential electric or magnetic field components over an arbitrary Huygens' surface enclosing the radiator. In this paper, a method using the spherical electric field measurement is developed to calculate the far field radiation. Following the Schelkunoff's field equivalence principle, a spherical region surrounding the radiator is assumed and its internal space is filled up with the perfect electric conductor (PEC). The radiated field from the Huygens' equivalent electric current is zero. Referring to the Ohm-Rayleigh method and the scattering wave superposition, the dyadic Green's function (DGF) with the presence of a PEC sphere is expanded by a series of spherical vector wave functions. Based on the DGF and the measured tangential electric field, the radiation behavior of the radiator can be directly predicted without involving the uncertainty from the inverse process. The robustness and accuracy of the proposed method are verified through several canonical antenna benchmarks.

Citation


Ping Li and Li Jun Jiang, "The Far Field Transformation for the Antenna Modeling Based on Spherical Electric Field Measurements," Progress In Electromagnetics Research, Vol. 123, 243-261, 2012.
doi:10.2528/PIER11102301
http://jpier.org/PIER/pier.php?paper=11102301

References


    1. Laurin, J. J., J. F. Zurcher, and F. Gardiol, "Near-field diagnostics of small printed antennas using the equivalent magnetic current approach," IEEE Trans. Antennas Propag., Vol. 49, No. 5, 814-828, May 2001.
    doi:10.1109/8.929636

    2. Weng, H., D. Beetner, R. E. Dubroff, and J. Shi, "Estimation of high frequency currents from the near-field scan measurement," IEEE Trans. Electromagn. Compat., Vol. 49, No. 4, Nov. 2007.

    3. Peter, P. and T. K. Sarkar, "Planar near-field to far-field transformation using an equivalent magnetic current approach," IEEE Trans. Antennas Propag., Vol. 40, No. 11, 1348-1356, Nov. 1992.
    doi:10.1109/8.202712

    4. Taaghol, A. and T. K. Sarkar, "Near-field to near/far-field transformation for arbitrary near-field geometry utilizing an equivalent magnetic current," IEEE Trans. Antennas Propag., Vol. 38, No. 3, 536-542, Aug. 1996.

    5. Sarkar, T. K. and A. Taaghol, "Near-field to near/far-field transformation for arbitrary near-field geometry utilizing an equivalent electric current and MOM," IEEE Trans. Antennas Propag., Vol. 47, No. 3, 566-573, Mar. 1999.
    doi:10.1109/8.768793

    6. Alvarez, Y., F. Las-Heras, and M. R. Pino, "Reconstruction of equivalent currents distribution over arbitrary three-dimensional surfaces based on integral equation algorithms," IEEE Trans. Antennas Propag., Vol. 55, No. 12, 3460-3468, Nov. 2007.
    doi:10.1109/TAP.2007.910316

    7. Alvarez, Y., F. Las-Heras, M. R. Pino, and T. K. Sarkar, "An improved super-resolution source reconstruction method," IEEE Trans. Antennas Propag., Vol. 58, No. 11, 3855-3866, Nov. 2009.

    8. Serhir, M., P. Besnier, and M. Drissim, "An accurate equivalent behavioral model of antenna radiation using a mode-matching technique based on spherical near field measurements," IEEE Trans. Antennas Propag., Vol. 56, No. 1, 48-57, Jan. 2008.
    doi:10.1109/TAP.2007.913080

    9. Persson, K. and M. Gustafsson, "Reconstruction of equivalent currents using a near-field data transformation with radome applications," Progress In Electromagnetics Research, Vol. 54, 179-198, 2005.
    doi:10.2528/PIER04111602

    10. Quijano, J. L. A. and G. Vecchi, "Improved-accuracy source reconstruction on arbitrary 3-D surfaces," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1046-1049, Sep. 2009.
    doi:10.1109/LAWP.2009.2031988

    11. Quijano, J. L. A. and G. Vecchi, "Field and source equivalence in source reconstruction on 3D surfaces," Progress In Electromagnetics Research, Vol. 103, 67-100, 2010.
    doi:10.2528/PIER10030309

    12. Quijano, J. L. A. and G. Vecchi, "Near- and very near-field accuracy in 3-D source reconstruction," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 634-637, Jul. 2010.

    13. Jorgensen, E., P. Meincke, and M. Sabbadini, Improved source reconstruction technique for antenna diagnostics, Proc. 32nd ESA Antenna Workshop, The Netherlands, Oct. 2010.

    14. Rengarajan, S. R. and Y. Rahmat-Samii, "The field equivalence principle: Illustration of the establishment of the non-intuitive null fields," IEEE Antennas and Propagation Magazine, Vol. 42, No. 4, 122-128, Aug. 2000.
    doi:10.1109/74.868058

    15. Schmidt, C. H., M. M. Leibfritz, and T. F. Eibert, "Fully probe-corrected near-field far-field transformation employing plane wave expansion and diagonal translation operators," IEEE Trans. Antennas Propag., Vol. 56, No. 3, 737-746, Mar. 2008.
    doi:10.1109/TAP.2008.916975

    16. Eibert, T. F. and C. H. Schmidt, "Multilevel fast multipole accelerated inverse equivalent current method employing Rao-Wilton-Glisson discretization of electric and magnetic surface currents," IEEE Trans. Antennas Propag., Vol. 57, No. 4, 737-746, Apr. 2009.
    doi:10.1109/TAP.2009.2015828

    17. Tai, C.-T., Dyadic Green Functions in Electromagnetic Theory, 2nd Ed., IEEE Press, 1994.

    18. Kong, J. A., Electromagnetic Wave Theory, EMW Publishing, Cambridge, Massachusetts, USA, 2008.

    19. Chew, W. C., Waves and Fields in Inhomogeneous Media, Wiley, IEEE Press, 1999, ISBN 9780470547052.
    doi:10.1109/9780470547052

    20. Koivisto, P., "Reduction of errors in antenna radiation patterns using optimally truncated spherical wave expansion," Progress In Electromagnetics Research, Vol. 47, 313-333, 2004.
    doi:10.2528/PIER03120301

    21. EM Software and Systems, FEKO Suite 5.2. Available: http://www.feko.info..

    22. Hansen, J. E., Spherical Near-Field Antenna Measurements, Peter Peregrinus, London, 1998.