Vol. 122

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2011-11-14

Compact Hybrid Coaxial Architecture for 3 GHz -10 GHz UWB Quasi-Optical Power Combiners

By Ivan Russo, Luigi Boccia, Giandomenico Amendola, and Hermann Schumacher
Progress In Electromagnetics Research, Vol. 122, 77-92, 2012
doi:10.2528/PIER11101704

Abstract

Tray-type quasi-optical (QO) power combiners are able to combine the high- and medium-output power of QO systems with the well-known advantages of pulsed ultra-wideband (UWB) systems. In this work, an alternative low-profile tray-type passive structure for 3 GHz-10 GHz power combining is proposed. The purpose of the proposed solution is to reduce the physical size with respect to other existing architectures by using hybrid coaxial lines. In spite of the reduced size, the structure maintains ultra-wideband operation and high combining efficiency, as proved through measurements. Therefore, the proposed structure is suitable for integration with monolithic microwave integrated circuit (MMIC) amplifiers for medium- and high-power generation, depending on the type of MMICs which are integrated into the passive combiner. Numerical analyses of the designed power combiner integrated with some MMIC amplifiers reveal its benefits in terms of increased output power and wider dynamic range compared to isolated MMICs.

Citation


Ivan Russo, Luigi Boccia, Giandomenico Amendola, and Hermann Schumacher, "Compact Hybrid Coaxial Architecture for 3 GHz -10 GHz UWB Quasi-Optical Power Combiners," Progress In Electromagnetics Research, Vol. 122, 77-92, 2012.
doi:10.2528/PIER11101704
http://jpier.org/PIER/pier.php?paper=11101704

References


    1. AlShehri, S. A., S. Khatun, A. B. Jantan, R. S. A. Raja Abdullah, R. Mahmood, and Z. Awang, "Experimental breast tumor detection using Nn-based UWB imaging," Progress In Electromagnetics Research, Vol. 111, 447-465, 2011.
    doi:10.2528/PIER10110102

    2. Lazaro, A., D. Girbau, and R. Villarino, "Analysis of vital signs monitoring using an IR-UWB radar," Progress In Electromagnetics Research, Vol. 100, 265-284, 2010.
    doi:10.2528/PIER09120302

    3. AlShehri, S. A., S. Khatun, A. B. Jantan, R. S. A. Raja Abdullah, R. Mahmood, and Z. Awang, "3D experimental detection and discrimination of malignant and benign breast tumor using Nn-based UWB imaging," Progress In Electromagnetics Research, Vol. 116, 221-237, 2011.

    4. Fullerton, L. W., Spread spectrum radio transmission system, US Patent 4,641,317, 1987.

    5. McEwan, T. E., Ultra-wideband radar motion sensor, US Patent 5,361,070, 1994.

    6. Daniels, D. J. and I. O. E. Engineers, Ground Penetrating Radar, IET, 2004.

    7. Mink, J. W., "Quasi-optical power combining of solid state millimeter-wave sources," IEEE Trans. Microw. Theory Tech., Vol. 34, 273-279, 1986.
    doi:10.1109/TMTT.1986.1133322

    8. Kim, M., et al., "A grid amplifier," IEEE Microw. Guided Wave Lett., Vol. 1, 322-324, 1991.
    doi:10.1109/75.93899

    9. Cheung, C. T., M. P. De Lisio, J. J. Rosenberg, R. Tsai, R. Kagiwada, and D. B. Rutledge, "A single chip two-stage W-band grid amplifier," IEEE MTT-S Int. Microw. Symp. Dig., Vol. 1, 79-82, 2004.

    10. Russo, I., L. Boccia, G. Amendola, G. Di Massa, and P. S. Hall, "Simple model for the parametric analysis of grid amplifiers," IET Microw., Ant. Prop., Vol. 3, No. 5, 877-881, Aug. 2009.
    doi:10.1049/iet-map.2008.0252

    11. Tsai, H. S., M. J. W. Rodwell, and R. A. York, "Planar amplifier array with improved bandwidth using folded slots," IEEE Microw. Guided Wave Lett., Vol. 4, 112-114, 1994.
    doi:10.1109/75.282576

    12. Marshall, T., M. Forman, and Z. Popovic, "Two Ka-band quasi-optical amplifier arrays," IEEE Trans. Microw. Theory Tech., Vol. 47, 2568-2573, 1999.
    doi:10.1109/22.809008

    13. Ortiz, S. C., J. Hubert, L. Mirth, E. Schlecht, and A. Mortazawi, "A high-power Ka-band quasi-optical amplifier array," IEEE Trans. Microw. Theory Tech., Vol. 50, 487-494, 2002.
    doi:10.1109/22.982228

    14. Russo, I., L. Boccia, G. Amendola, and G. Di Massa, "Simplified design flow of quasi-optical slot amplifiers," Progress In Electromagnetics Research, Vol. 96, 347-359, 2009.
    doi:10.2528/PIER09072807

    15. Bundy, S. C. and Z. B. Popovic, "A generalized analysis for grid oscillator design," IEEE Trans. Microw. Theory Tech., Vol. 42, 2486-2491, 1994.
    doi:10.1109/22.339786

    16. Deckman, B., D. Rutledge, J. J. Rosenberg, E. Sovero, D. S. Deakin, and Jr., "A 1watt 38 GHz monolithic grid oscillator," IEEE MTT-S Int. Microw. Symp. Dig., Vol. 3, 1843-1845, 2001.

    17. Zhang, G., H. Zhang, Z. Wang, and Z. Yuan, "Improvements in a 4-elements high gain directional UWB antenna array," J. Electromagn. Waves and Appl., Vol. 24, No. 4, 453-461, 2010.

    18. Song, H., M. Bialkowski, and P. Kabacik, "Parameter study of a broadband uniplanar quasi-Yagi antenna," 13th Int. Conf. Microw., Radar Wireless Commun., MIKON, Vol. 1, 166-169, 2000.

    19. Cheng, N.-S., P. Jia, D. B. Rensch, and R. A. York, "A 120-watt X-band spatially combined solid-state amplifier," IEEE Trans. Microw. Theory Tech., Vol. 47, 2557-2561, Dec. 1999.
    doi:10.1109/22.809006

    20. Alexanian, A. and R. A. York, Broadband waveguide-based spatial combiner, IEEE MTT-S Int. Microw. Symp. Dig., Vol. 3, 1139-1142, 1997.

    21. Jia, P., L. Y. Chen, A. Alexanian, and R. York, "Multioctave spatial power combining in oversized coaxial waveguide," IEEE Trans. Microw. Theory Tech., Vol. 50, 1355-1360, 2002.

    22. Wu, K., D. Deslandes, and Y. Cassivi, "The substrate integrated circuits --- a new concept for high-frequency electronics and optoelectronics," 6th Int. Conf. Telecommun. Modern Satell., Cable Broadcast. Service, TELSIKS, Vol. 1, P-III-P-X, 2003.

    23. Hu, G., C.-J. Liu, L. Yan, K.-M. Huang, and W. Menzel, "Novel dual mode substrate integrated waveguide band-pass filters," J. Electromagn. Waves and Appl., Vol. 24, No. 11-12, 1661-1672, 2010.
    doi:10.1163/156939310792149768

    24. Chen, T., "Determination of the capacitance, inductance, and characteristic impedance of rectangular lines," IEEE Trans. Microw. Theory Tech., Vol. 8, No. 5, 510-519, 1960.
    doi:10.1109/TMTT.1960.1124779

    25. CST Microwave Studior, CST Computer Simulation Tech. AG.

    26. Shin, J. and D. Schaubert, "A parameter study of stripline-fed Vivaldi notch-antenna arrays," IEEE Trans. Antennas Propag., Vol. 47, No. 5, 879-886, 1999.
    doi:10.1109/8.774151

    27. Agilent ADSr, Agilent Technologies Inc..