Vol. 122

Latest Volume
All Volumes
All Issues

Matrix Structure of Metamaterial Absorbers for Multispectral Terahertz Imaging

By Sergey Alexandrovich Kuznetsov, Andrey Georgievich Paulish, Alexander Vitalievich Gelfand, Pavel Alexandrovich Lazorskiy, and Victor Nikolaevich Fedorinin
Progress In Electromagnetics Research, Vol. 122, 93-103, 2012


A multispectral 24 x 24 bolometric matrix structure of terahertz (THz) absorbers operating at 0.3-0.4 THz was proposed and experimentally investigated. Each pixel of the structure was implemented as a fragment of an ultra-thin metamaterial absorber. The matrix structure consisted of four types of pixels with nearly perfect absorptivity. Three pixels were at 0.30, 0.33, 0.36 THz respectively with identically oriented polarization sensitivity, and the fourth pixel was at 0.33 THz oriented with polarization sensitivity orthogonal to foregoing ones. The backside of the structure included a high-performance infrared emissive layer. Resonant absorption of THz radiation induced the structure heating and increasing IR emission from the emissive layer, which was henceforth detected by the IR camera. The terahertz imaging system, capable to operate in real time, with spectral and polarization discrimination was demonstrated. The experimental results showed good spectral and polarization resolution together with acceptable spatial resolution.


Sergey Alexandrovich Kuznetsov, Andrey Georgievich Paulish, Alexander Vitalievich Gelfand, Pavel Alexandrovich Lazorskiy, and Victor Nikolaevich Fedorinin, "Matrix Structure of Metamaterial Absorbers for Multispectral Terahertz Imaging," Progress In Electromagnetics Research, Vol. 122, 93-103, 2012.


    1. Chang, C.-I, Hyperspectral Imaging: Techniques for Spectral Detection and Classification , Springer, 2003.

    2. Chang, C.-I, Hyperspectral Data Exploitation: Theory and Applications, John Wiley & Sons, Inc., Hoboken, New Jersey, 2007.

    3. Eismann, M. T., J. Kerekes, A. P. Schaum, and R. A. Leathers, "Multispectral and hyperspectral imaging: Introduction to the feature issue," Appl. Opt., Vol. 47, MHI1-MHI1, 2008.

    4. Adam, E., O. Mutanga, and D. Rugege, "Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: A review," Wetlands Ecology and Management, Vol. 18, 281-296, 2010.

    5. Kruse, F. A., "Identification and mapping of minerals in drill core using hyperspectral image analysis of infrared reflectance spectra," International Journal of Remote Sensing, Vol. 17, No. 9, 1623-1632, 1996.

    6. Govender, M., K. Chetty, and H. Bulcock, "A review of hyperspectral remote sensing and its application in vegetation and water resource studies," Water SA, Vol. 33, No. 2, 145-151, 2007.

    7. Klemas, V., "Remote sensing techniques for studying coastal ecosystems: An overview," Journal of Coastal Research, Vol. 27, No. 1, 2-17, 2011.

    8. Lins, E. C., S. Pratavieira, W. T. Shigeyosi, M. Dutra-Correa, V. S. Bagnato, C. Kurachi, and L. G. Marcassa, "Assembly, calibration and application of a hyperspectral image system for biomedical imaging," WC 2009, IFMBE Proceedings 25/II, O. Dössel and W. C. Schlegel (eds.), 697-700, 2009. Available: www.springerlink.com.

    9. Lee, Y.-S., Principles of Terahertz Science and Technology, Springer Science+Business Media, LLC, New York, 2009.

    10. Woolard, D. L., W. J. O. Jensen, R. J. Hwu, and M. S. Shur, "Terahertz science and technology for military and security applications," Selected Topics in Electronics and Systems, Vol. 46, World Scientific Publishing Co. Pte. Ltd., Singapore, 2007.

    11. Dexheimer, S. L., Terahertz Spectroscopy: Principles and Applications, CRC Press, Taylor & Francis Group, Boca Raton, FL, USA, 2008.

    12., TeraView Company, Available: http://www.teraview.com.

    13. Federici, J. F., B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, "THz imaging and sensing for security applications --- Explosives, weapons and drugs," Semicond. Sci. Technol., Vol. 20, S266-S280, 2005.

    14. Watanabe, Y., K. Kawase, T. Ikari, H. Ito, Y. Ishikawa, and H. Minamide, "Spatial pattern separation of chemicals and frequency --- Independent components by terahertz spectroscopic imaging," Applied Optics, Vol. 42, 5744-5748, 2003.

    15. Kawase, K., Y. Ogawa, and Y. Watanabe, "Component pattern analysis of chemicals using multispectral THz imaging system," Proc. SPIE, Vol. 5354, 63-70, 2004, doi:10.1117/12.528517.

    16. Han, P. Y., G. C. Cho, and X.-C. Zhang, "Time-domain transillumination of biomedical tissue with terahertz pulses," Opt. Letters, Vol. 25, 242-244, 2000.

    17. Löffler, T., T. Bauer, K. J. Siebert, H. G. Roskos, A. Fitzgerald, and S. Czasch, "Terahertz dark-field imaging of biomedical tissue," Optics Express, Vol. 9, No. 12, 616-621, 2001.

    18. Siebert, K., T. Löffer, H. Quast, M. Thomson, T. Bauer, R. Leonhardt, S. Czasch, and H. G. Roskos, "All-optoelectronic CW THz imaging for biomedical applications," Phys. Med. Bio., Vol. 47, No. 21, 3743-3748, 2002.

    19. Woodward, R. M., B. Cole, V. P. Wallance, D. D. Arnone, R. Pye, E. H. Linfield, M. Pepper, and A. G. Davies, "Terahertz pulse imaging of in-vitro basal cell carcinoma samples," Lasers and Electro-Optics, CLEO'01, Technical Digest, Optical Society of America, Washington, DC, 329-330, 2001.

    20. Arnone, D., C. Ciesla, and M. Pepper, "Terahertz imaging comes into view," Issue April 2000 of Physics World, 35-40, Institute of Physics and IOP Publishing Limited, 2000.

    21. Silverberg, R. F., S. Ali, A. Bier, B. Campano, T. C. Chen, E. S. Cheng, D. A. Cottingham, T. M. Crawford, T. Downes, F. M. Finkbeiner, D. J. Fixsen, D. Logan, S. S. Meyer, C. O'Dell, T. Perera, E. H. Sharp, P. T. Timbie, and G. W. Wilson, "A bolometer array for the spectral energy distribution (SPEED) camera," Nuclear Instruments and Methods in Physics Research A, Vol. 520, 421-423, 2004.

    22. Kuznetsov, S. A., A. G. Paulish, A. V. Gelfand, P. A. Lazorskiy, and V. N. Fedorinin, "Bolometric THz-to-IR converter for terahertz imaging," Applied Physics Letters, Vol. 99, 023501-3, 2011.

    23. Balanis, C. A., Modern Antenna Handbook, Wiley, John Wiley & Sons, Inc., USA, 2008.

    24. Liu, T. S., A. F. Starr, and W. J. Padilla, "Infrared spatial and frequency selective metamaterial with near-unity absorbance," Phys. Rev. Lett., Vol. 104, 207403-4, 2010.

    25. Padilla, W. and X. Liu, "Perfect electromagnetic absorbers from microwave to optical," Optical Design & Engineering, SPIE Newsroom, 1-3, 2010, doi:10.1117/2.1201009.003137.

    26. Beruete, M., M. Sorolla, R. Marques, J. D. Baena, and M. J. Freire, "Resonance and cross-polarization effects in conventional and complementary split ring resonator periodic screens ," Electromagnetics, Vol. 26, 247-260, 2006.

    27. Capolino, F., Theory and Phenomena of Metamaterials, Series Handbook of Artificial Materials, Vol. 1, CRC Press, Taylor and Francis Group, USA, 2009.

    28. Lin, S. S., K. M. Yemelyanov, E. N. Pugh, Jr., and N. Engheta, "Separation and contrast enhancement of overlapping cast shadow components using polarization," Opt. Express, Vol. 14, No. 16, 7099-7108, 2006.

    29. Lin, S. S., K. M. Yemelyanov, E. N. Pugh, Jr., and N. Engheta, "Polarization- and specular-reflection-based, non-contact latent fingerprint imaging and lifting," Journal of the Optical Society of America A, Vol. 23, No. 9, 2137-2153, 2006.

    30. Demos, S. G. and R. R. Alfano, "Optical polarization imaging," Appl. Opt., Vol. 36, 150-155, 1997.

    31. Xuan, J., U. Klimach, H. Zhao, Q. Chen, Y. Zou, and Y. Wang, "Improved diagnostics using polarization imaging and artificial neural networks," International Journal of Biomedical Imaging, Vol. 2007, Article ID 74143, 11 Pages, 2007, doi:10.1155/2007/74143..