Vol. 123

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2011-12-29

Gradual Thinning Synthesis for Linear Array Based on Iterative Fourier Techniques

By Xin-Kuan Wang, Yong-Chang Jiao, and Yan Yan Tan
Progress In Electromagnetics Research, Vol. 123, 299-320, 2012
doi:10.2528/PIER11100903

Abstract

In this paper, a modified iterative fourier technique (MIFT) for thinning uniformly spaced linear arrays featuring a minimum sidelobe level as well as narrow beam is presented. Since IFT is a thinning procedure which has to be performed many trial times with different initial element distributions to get the optimum solution, it is, to some extent, time consuming. Moreover, in each trial of IFT, the number of iterations is usually low, which makes the method tend to be trapped in local solution even with a large number of trials. Therefore, the similar procedures for both MIFT and IFT are to derive the element excitations from the prescribed array factor using successive forward and backward Fourier transforms, and array thinning is accomplished by setting the amplitudes of a predetermined number of the largest element excitations to unity while the others to zero during each iteration cycle. Furthermore, in MIFT, based on the idea of gradual thinning which is inspired by perturbation theory, an adaptively changed fill factor is proposed to modify IFT with the purpose of accelerating computational speed and facilitating convergence. The immediate result caused by this modified fill factor can be embodied in two points. One point is that unlike the random number of iterations contained in different trials of IFT, the number of iterations in all trials of MIFT is a fixed value and only predetermined by the array inherent features (symmetrical or asymmetrical) and fill factor. Therefore, sufficient iterations are ensured in each trial to effectively help the algorithm avoid trapping. The other point is that when MIFT is performed, the array elements are gradually truncated, which maintains the most useful element excitations while maximally excludes the bad excitations, so that the optimum solution could be obtained through only a small number of trials and thereby substantially save computational cost. The effectiveness of MIFT will be demonstrated for various linear arrays and compared with the published reports.

Citation


Xin-Kuan Wang, Yong-Chang Jiao, and Yan Yan Tan, "Gradual Thinning Synthesis for Linear Array Based on Iterative Fourier Techniques," Progress In Electromagnetics Research, Vol. 123, 299-320, 2012.
doi:10.2528/PIER11100903
http://jpier.org/PIER/pier.php?paper=11100903

References


    1. Ayestarán, R. G., J. Laviada, and F. Las-Heras, "Realistic antenna array synthesis in complex environments using a mom-svr approach," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 1, 97-108, 2009.
    doi:10.1163/156939309787604670

    2. Orchard, H. J., R. S. Elliott, and G. J. Stern, "Optimising the synthesis of shaped beam antenna patterns," IEE Proceedings, Vol. 132, No. 1, 63-68, 1985.

    3. Franceschetti, G., G. Mazzarella, and G. Panariello, "Array synthesis with excitation constraints," IEE Proceedings, Vol. 135, No. 6, 400-407, 1988.

    4. Wang, W.-B., Q. Y. Feng, and D. Liu, "Application of chaotic particle swarm optimization algorithm to pattern synthesis of antenna arrays," Progress In Electromagnetics Research, Vol. 115, 173-189, 2011.

    5. Liu, D., Q. Y. Feng, W.-B. Wang, and X. Yu, "Synthesis of unequally spaced antenna arrays by using inheritance learning particle swarm optimization," Progress In Electromagnetics Research, Vol. 118, 205-221, 2011.
    doi:10.2528/PIER11050502

    6. Zaharis, Z. D. and T. V. Yioultsis, "A novel adaptive beamforming technique applied on linear antenna arrays using adaptive mutated boolean PSO," Progress In Electromagnetics Research, Vol. 117, 165-179, 2011.

    7. Carro Ceballos, P. L., J. de. Mingo Sanz, and P. G. Dúcar, "Radiation pattern synthesis for maximum mean effective gain with spherical wave expansions and particle swarm techniques," Progress In Electromagnetics Research, Vol. 103, 355-370, 2010.
    doi:10.2528/PIER10031808

    8. Zaharis, Z. D., S. K. Goudos, and T. V. Yioultsis, "Application of Boolean PSO with adaptive velocity mutation to the design of optimal linear antenna arrays excited by uniformamplitude current distribution," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 10, 1422-1436, 2011.

    9. Khodier, M. M. and C. G. Christodoulou, "Linear array geometry synthesis with minimum sidelobe level and null control using particle swarm optimization," IEEE Trans. on Antennas and Propag., Vol. 53, No. 8, 2674-2679, 2005.
    doi:10.1109/TAP.2005.851762

    10. Lanz Diego, M., J. R. Pérez Lopez, and J. Basterrechea, "Synthesis of planar arrays using a modified particle swarm optimization algorithm by introducing a selection operator and elitism," Progress In Electromagnetics Research, Vol. 93, 145-160, 2009.
    doi:10.2528/PIER09041303

    11. Li, W.-T., X.-W. Shi, and Y.-Q. Hei, "An improved particle swarm optimization algorithm for pattern synthesis of phased arrays," Progress In Electromagnetics Research, Vol. 82, 319-332, 2008.
    doi:10.2528/PIER08030904

    12. Mahanti, G. K., A. Chakrabarty, and S. Das, "Phase-only and amplitude phase synthesis of dual-pattern linear antenna arrays using floating-point genetic algorithms," Progress In Electromagnetics Research, Vol. 68, 247-259, 2007.
    doi:10.2528/PIER06072301

    13. Chen, K. S., Z. S. He, and C. L. Han, "A modified real GA for the sparse linear array synthesis with multiple constraints," IEEE Trans. on Antennas and Propag., Vol. 54, No. 7, 2169-2173, 2006.
    doi:10.1109/TAP.2006.877211

    14. Li, F., Y.-C. Jiao, L.-S. Ren, Y.-Y. Chen, and L. Zhang, "Pattern synthesis of concentric ring array antennas by differential evolution algorithm," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 2--3, 421-430, 2011.
    doi:10.1163/156939311794362777

    15. Mallipeddi, R., J. P. Lie, P. N. Suganthan, S. G. Razul, and C. M. S. See, "A differential evolution approach for robust adaptive beamforming based on joint estimation of look direction and array geometry," Progress In Electromagnetics Research, Vol. 119, 381-394, 2011.
    doi:10.2528/PIER11052205

    16. Li, R., L. Xu, X.-W. Shi, N. Zhang, and Z.-Q. Lv, "Improved differential evolution strategy for antenna array pattern synthesis problems," Progress In Electromagnetics Research, Vol. 113, 429-441, 2011.

    17. Rodriguez, J. A., F. Ares, and E. Moreno, "Linear array pattern synthesis optimizing array element excitations using the simulated annealing technique," Microwave Opt. Technol. Lett., Vol. 23, No. 4, 224-226, 1999.
    doi:10.1002/(SICI)1098-2760(19991120)23:4<224::AID-MOP10>3.0.CO;2-M

    18. Caorsi, S., et al., "Peak sidelobe level reduction with a hybrid approach based on GAs and difference sets," IEEE Trans. on Antennas and Propag., Vol. 52, No. 4, 1116-1121, 2004.
    doi:10.1109/TAP.2004.825689

    19. Pérez Lopez, J. R. and J. Basterrechea, "Hybrid particle swarm-based algorithms and their application to linear array synthesis," Progress In Electromagnetics Research, Vol. 90, 63-74, 2009.
    doi:10.2528/PIER08122212

    20. Donelli, M., et al., "Linear antenna synthesis with a hybrid genetic algorithm," Progress In Electromagnetics Research, Vol. 49, 1-22, 2004.
    doi:10.2528/PIER03121301

    21. Rajo-Iglesias, E. and Ó. Quevedo-Teruel, "Linear array synthesis using an ant colony optimization based algorithm," IEEE Antennas and Propagation Magazine, Vol. 49, No. 2, 70-79, 2007.
    doi:10.1109/MAP.2007.376644

    22. Liu, Y., Z.-P. Nie, and Q. H. Liu, "A new method for the synthesis of non-uniform linear arrays with shaped power patterns," Progress In Electromagnetics Research, Vol. 107, 349-363, 2010.
    doi:10.2528/PIER10060912

    23. Dib, N. I., S. K. Goudos, and H. Muhsen, "Application of taguchi's optimization method and self-adaptive differential evolution to the synthesis of linear antenna arrays," Progress In Electromagnetics Research, Vol. 102, 159-180, 2010.
    doi:10.2528/PIER09122306

    24. Li, G., S. Yang, M. huang, and Z. Nie, "Sidelobe suppression in time modulated linear arrays with unequal element spacing," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 5--6, 775-783, 2010.
    doi:10.1163/156939310791036368

    25. Fondevila, J., et al., "Optimizing uniformly excited linear arrays through time modulation," IEEE Antennas and Wireless Propag. Lett., Vol. 3, 298-301, 2004.
    doi:10.1109/LAWP.2004.838833

    26. Haupt, R. L., "Thinned arrays using genetic algorithms," IEEE Trans.on Antennas and Propag., Vol. 42, No. 7, 993-999, 993.
    doi:10.1109/8.299602

    27. Fernández-Delgado, M., J. A. Rodríguez-González, R. Iglesias, S. Barro, and F. J. Ares-Pena, "Fast array thinning using global optimization methods," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 16, 2259-2271, 2010.
    doi:10.1163/156939310793699136

    28. Wang, J., B. Yang, S. H. Wu, and J. Chen, "A novel binary particle swarm optimization with feedback for synthesizing thinned planar arrays," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 14--15, 1985-1998, 2011.
    doi:10.1163/156939311798071965

    29. Bucci, O. M., T. Isernia, and A. F. Morabito, "A deterministic approach to the synthesis of pencil beams through planar thinned arrays," Progress In Electromagnetics Research, Vol. 101, 217-230, 2010.
    doi:10.2528/PIER10010104

    30. Jin, N. and Y. Rahmat-Samii, "Advances in particle swarm optimization for antenna designs: Real-number, binary, single-objective and multi-objective implementations," IEEE Trans. on Antennas and Propag., Vol. 55, No. 3, 556-567, 2007.
    doi:10.1109/TAP.2007.891552

    31. Mahanti, G. K., N. N. Pathak, and P. K. Mahanti, "Synthesis of thinned linear antenna arrays with fixed sidelobe level using real-coded genetic algorithm," Progress In Electromagnetics Research, Vol. 75, 319-328, 2007.
    doi:10.2528/PIER07061304

    32. Quevedo-Teruel, Ó. and E. Rajo-Iglesias, "Ant colony optimization in thinned array synthesis with minimum sidelobe level," IEEE Antennas and Wireless Propag. Lett., Vol. 5, 349-352, 2006.
    doi:10.1109/LAWP.2006.880693

    33. Keizer, W. P. M. N., "Linear array thinning using iterative FFT techniques," IEEE Trans. on Antennas and Propag., Vol. 56, No. 8, 2757-2760, 2008.
    doi:10.1109/TAP.2008.927580

    34. Keizer, W. P. M. N., "Element failure correction for a large monopulse phased array antenna with active amplitude weighting," IEEE Trans. on Antennas and Propag., Vol. 55, No. 8, 2211-2218, 2007.
    doi:10.1109/TAP.2007.902008

    35. Keizer, W. P. M. N., "Low sidelobe patterns synthesis using iterative fourier techniques coded in MATLAB," IEEE Antennas and Propagation Magazine, Vol. 51, No. 2, 137-150, 2009.
    doi:10.1109/MAP.2009.5162038

    36. Bucci, O. M., G. D'Elia, G. Mazzarella, and G. Panariello, "Antenna pattern synthesis: A new general approach," Proceedings of the IEEE, Vol. 82, No. 3, 358-371, 1994.
    doi:10.1109/5.272140

    37. Quijano, J. L. A. and G. Vecchi, "Alternating adaptive projections in antenna synthesis," IEEE Trans. on Antennas and Propag., Vol. 58, No. 3, 727-737, 2010.
    doi:10.1109/TAP.2009.2039307

    38. Proakis, J. G. and D. G. Manolakis, Digital Signal Processing Principles, Algorithms, and Applications, 4th Ed., 449-459, Publishing House of Electronics Industry, Beijing, 2007.