Vol. 123

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2011-12-24

Composite Scattering of Ship on Sea Surface with Breaking Waves

By Min Zhang, Wei Luo, Gen Luo, Chao Wang, and Hong-Cheng Yin
Progress In Electromagnetics Research, Vol. 123, 263-277, 2012
doi:10.2528/PIER11100811

Abstract

The composite backscattering of the ship model on sea surface is investigated with the spilling breaking waves and ship bow waves. The spilling breakers are approximately modeled with the wedge-like waves, and the ship bow waves are simulated based on the Kelvin model. With the modified four-path model, each scattering component is evaluated with the high frequency approximation methods for the total composite scattering. Due to the volume scattering, the composite scattering at large incidence angles is strongly enhanced by the non-Bragg scattering. The relationship of the composite scattering and the ship motion is analyzed. The numerical results of sea surface scattering agree with the measured data well, and the complex physical mechanism of the low-grazing-angle composite scattering is explicitly evaluated in this paper.

Citation


Min Zhang, Wei Luo, Gen Luo, Chao Wang, and Hong-Cheng Yin, "Composite Scattering of Ship on Sea Surface with Breaking Waves," Progress In Electromagnetics Research, Vol. 123, 263-277, 2012.
doi:10.2528/PIER11100811
http://jpier.org/PIER/pier.php?paper=11100811

References


    1. Xu, P., K.-S. Chen, and L. Tsang, "Analysis of microwave emission of exponentially correlated rough soil surfaces from 1.4 GHz to 36.5 GHz," Progress In Electromagnetics Research, Vol. 108, 205-219, 2010.
    doi:10.2528/PIER10072703

    2. Liang, D., P. Xu, L. Tsang, Z. Gui, and K.-S. Chen, "Electromagnetic scattering by rough surfaces with large heights and slopes with applications to microwave remote sensing of rough surface over layered media," Progress In Electromagnetics Research, Vol. 95, 199-218, 2009.
    doi:10.2528/PIER09071413

    3. Chen, K.-S., L. Tsang, and J.-C. Shi, "Microwave emission from two-dimensional inhomogeneous dielectric rough surfaces based on physics-based two-grid method," Progress In Electromagnetics Research, Vol. 67, 181-203, 2007.
    doi:10.2528/PIER06082903

    4. Mittal, G. and D. Singh, "Critical analysis of microwave specular scattering response on roughness parameter and moisture content for bare periodic rough surfaces and its retrieval," Progress In Electromagnetics Research, Vol. 100, 129-152, 2010.
    doi:10.2528/PIER09091705

    5. Zhang, M., Y. W. Zhao, H. Chen, and W. Q. Jiang, "SAR imaging simulation for composite model of ship on dynamic ocean scene," Progress In Electromagnetics Research, Vol. 113, 395-412, 2011.
    doi:10.2528/PIER11071501

    6. Luo, W., M. Zhang, Y. W. Zhao, and H. Chen, "An efficient hybrid high-frequency solution for the composite scattering of the ship on very large two-dimensional sea surface," Progress In Electromagnetics Research M, Vol. 8, 79-89, 2009.
    doi:10.2528/PIERM09050103

    7. Zhao, Y. W., M. Zhang, and H. Chen, "An efficient ocean SAR raw signal simulation by employing fast fourier transform," Journal of Electromagnetic Waves and Application, Vol. 24, No. 16, 2273-2284, 2010.
    doi:10.1163/156939310793699064

    8. Baussard, A., M. Rochdi, and A. Khenchaf, "PO/Mec-based scattering model for complex objects on a sea surface," Progress In Electromagnetics Research, Vol. 111, 229-251, 2011.
    doi:10.2528/PIER10083005

    9. Brelet, Y. and C. Bourlier, "SPM numerical results from an effective surface impedance for a one-dimensional perfectly-conducting rough sea surface," Progress In Electromagnetics Research, Vol. 81, 413-436, 2008.
    doi:10.2528/PIER07121703

    10. Ishimaru, A., C. Le, Y. Kuga, L. A. Sengers, and T. K. Chan, "Polarimetric scattering theory for high slope rough surface," Progress In Electromagnetics Research, Vol. 14, 1-36, 1996.

    11. Fabbro, V., C. Bourlier, and P. F. Combes, "Forward propagation modeling above gaussian rough surfaces by the parabolic shadowing effect," Progress In Electromagnetics Research, Vol. 58, 243-269, 2006.
    doi:10.2528/PIER05090101

    12. Yang, W., Z. Zhao, C. Qi, W. Liu, and Z.-P. Nie, "Iterative hybrid method for electromagnetic scattering from a 3-D object above a 2-D random dielectric rough surface," Progress In Electromagnetics Research, Vol. 117, 435-448, 2011.

    13. Oraizi, H. and S. Hosseinzadeh, "A novel marching algorithm for radio wave propagation modeling over rough surfaces," Progress In Electromagnetics Research, Vol. 57, 85-100, 2006.
    doi:10.2528/PIER05051001

    14. Ji, W.-J. and C.-M. Tong, "Bistatic scattering from two-dimensional dielectric ocean rough surface with a PEC object partially embedded by using the G-Smcg method," Progress In Electromagnetics Research, Vol. 105, 119-139, 2010.
    doi:10.2528/PIER10041101

    15. Lee, P. H. Y., et al., "Wind-speed dependence of small-grazing-angle microwave backscatter from sea surfaces," IEEE Trans. on Antennas and Propagat., Vol. 44, No. 3, 333-340, 1996.
    doi:10.1109/8.486302

    16. Walker, D., "Doppler modelling of radar sea clutter," IEE Proceedings, Radar, Sonar and Navigation, Vol. 148, No. 2, 73-80, 2001.
    doi:10.1049/ip-rsn:20010182

    17. West, J. C. and Z. Q. Zhao, "Electromagnetic modeling of multipath scattering from breaking water waves with rough faces," IEEE Trans. on Geosci. and Remote Sens., Vol. 40, No. 3, 583-592, 2002.
    doi:10.1109/TGRS.2002.1000318

    18. West, J. C., "Low-grazing-angle (LGA) sea-spike backscattering from plunging breaker crests," IEEE Trans. on Geosci. and Remote Sens., Vol. 40, No. 2, 523-526, 2002.
    doi:10.1109/36.992830

    19. Zhao, Z. Q. and J. C. West, "Low-grazing-angle microwave scattering from a three-dimensional spilling breaker crest: A numerical investigation," IEEE Trans. on Geosci. and Remote Sens., Vol. 43, No. 2, 286-294, 2005.
    doi:10.1109/TGRS.2004.840644

    20. Qi, C., Z. Zhao, W. Yang, Z.-P. Nie, and G. Chen, "Electromagnetic scattering and doppler analysis of three-dimensional breaking wave crests at low-grazing angles," Progress In Electromagnetics Research, Vol. 119, 239-252, 2011.
    doi:10.2528/PIER11062401

    21. Kudryavtsev, V., D. Hauser, G. Caudal, and B. Chapron, "A semiempirical model of the normalized radar cross-section of the sea surface 1. background model," J. Geophys. Res., Vol. 108, No. C3, 8054, 2003.
    doi:10.1029/2001JC001003

    22. Kalmykov, A. I. and V. V. Pustovoytenko, "On polarization features of radio signals scattered from the sea surface at small grazing angles," J. Geophys. Res., Vol. 81, No. 12, 1960-1964, 1976.
    doi:10.1029/JC081i012p01960

    23. Kwoh, D. S. W. and B. M. Lake, "A deterministic, coherent and dual-polarized laboratory study of microwave backscattering from water waves, Part I: Short gravity waves without wind," IEEE Journal of Oceanic Engineering, Vol. 9, No. 5, 291-308, 1984.
    doi:10.1109/JOE.1984.1145638

    24. Lyzenga, D. R., A. L. Maffett, and R. A. Shuchman, "The contribution of wedge scattering to the radar cross section of the ocean surface," IEEE Trans. on Geosci. and Remote Sens., Vol. GE-21, No. 4, 502-505, 1983.
    doi:10.1109/TGRS.1983.350513

    25. Ericson, E. A. and D. R. Lyzenga, "Performance of a numerical iterative solution of the surface current integral equation for surfaces containing small radii of curvature," Radio Sci., Vol. 33, No. 2, 205-217, 1998.
    doi:10.1029/97RS03783

    26. Lyzenga, D. R. and E. A. Ericson, "Numerical calculations of radar scattering from sharply peaked ocean waves," IEEE Trans. on Geosci. and Remote Sens., Vol. 36, No. 2, 636-646, 1998.
    doi:10.1109/36.662744

    27. Tunaley, J. K. E., E. H. Buller, K. H. Wu, and M. T. Rey, "The simulation of the SAR image of a ship wake," IEEE Trans. on Geosci. and Remote Sens., Vol. 29, No. 1, 149-156, 1991.
    doi:10.1109/36.103305

    28. Ai, J., et al., "A novel ship wake CFAR detection algorithm based on SCR enhancement and normalized hough transform," IEEE Trans. on Geosci. and Remote Sens., Vol. 8, No. 4, 681-685, 2011.
    doi:10.1109/LGRS.2010.2100076

    29. Luo, W., M. Zhang, C. Wang, and H.-C. Yin, "Investigation of low-grazing-angle microwave backscattering from 3-D breaking SeaWaves," Progress In Electromagnetics Research, Vol. 119, 279-298, 2011.
    doi:10.2528/PIER11062607

    30. Shakeri, M., M. Tavakolinejad, and J. H. Duncan, "An experimental investigation of divergent bow waves simulated by a two-dimensional plus temporal wave marker technique," J. Fluid Mech., Vol. 634, 217-243, 2009.
    doi:10.1017/S0022112009007216

    31. Hennings, R. R., W. Alpers, and A. Viola, "Radar imaging of kelvin arms of ship wakes," Int. J. Remote Sensing, Vol. 20, No. 13, 2519-2543, 1999.
    doi:10.1080/014311699211912

    32. Ando, M., T. Murasaki, and T. Kinoshita, "Elimination of false singularities in GTD equivalent edge currents," IEE Proceedings H Microwaves, Antennas and Propagation, Vol. 138, 289-296, 1991.
    doi:10.1049/ip-h-2.1991.0049

    33. Fung, A. K. and K. K. Lee, "A semi-empirical sea-spectrum model for scattering coefficient estimation," IEEE Journal of Oceanic Engineering, Vol. 7, 166-176, 1982.
    doi:10.1109/JOE.1982.1145535

    34. Soriano, G., M. Joelson, and M. Saillard, "Doppler spectra from a two-dimensional ocean surface at L-band," IEEE Trans. on Geosci. and Remote Sens., Vol. 44, 2430-2437, 2006.
    doi:10.1109/TGRS.2006.873580

    35. Chen, H., M. Zhang, Y. Zhao, and W. Luo, "An efficient slope-deterministic facet model for SAR imagery simulation of marine scene," IEEE Trans. on Antennas and Propagat., Vol. 58, No. 11, 3751-3756, 2010.
    doi:10.1109/TAP.2010.2071349

    36. Guinard, N. W., J. T. Ransone, and J. C. Daley, "Variation of the NRCS of the sea with increasing roughness," J. Geophys. Res., Vol. 76, 1525-1538, 1971.
    doi:10.1029/JC076i006p01525