Vol. 122

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2011-12-08

Improving the Reliability of Frequency Domain Simulators in the Presence of Homogeneous Metamaterials - a Preliminary Numerical Assessment

By Giacomo Oliveri
Progress In Electromagnetics Research, Vol. 122, 497-518, 2012
doi:10.2528/PIER11100808

Abstract

The accuracy of the finite difference frequency domain (FDFD) method in the solution of canonical waveguide discontinuity problems involving complementary or nearly complementary metamaterials (MTMs) is analytically discussed. It is shown that the good accuracy of the method (in comparison with other frequency-domain techniques) is due to the intrinsic approximation which it introduces in the finite-difference discretization of sharp dielectric interfaces. By exploiting such a result, a perturbation algorithm is proposed for the reliable modeling of MTMs devices when other frequency domain numerical methods are at disposal. A preliminary numerical analysis is carried out to assess the reliability and accuracy of the proposed modeling approach when canonical scattering problems are at hand.

Citation


Giacomo Oliveri, "Improving the Reliability of Frequency Domain Simulators in the Presence of Homogeneous Metamaterials - a Preliminary Numerical Assessment," Progress In Electromagnetics Research, Vol. 122, 497-518, 2012.
doi:10.2528/PIER11100808
http://jpier.org/PIER/pier.php?paper=11100808

References


    1. Ziolkowski, R. W. and N. Engheta, "Special issue on metamaterials," IEEE Trans. on Antennas and Propag., Vol. 51, Oct. 2003.

    2. Itoh, T. and A. A. Oliner, "Special issue on metamaterials structures, phenomena and applications," IEEE Trans. on Microwave Theory and Tech., Vol. 53, Apr. 2005.

    3. Canto, J. R., C. R. Paiva, and A. M. Barbosa, "Dispersion and losses in surface waveguides containing double negative or chiral metamaterials," Progress In Electromagnetics Research, Vol. 116, 409-423, 2011.

    4. Chen, H., L. Huang, X. Cheng, and H. Wang, "Magnetic properties of metamaterial composed of closed rings," Progress In Electromagnetics Research, Vol. 115, 317-326, 2011.

    5. He, Y., J.-Q. Shen, and S. He, "Consistent formalism for the momentum of electromagnetic waves in lossless dispersive metamaterials and the conservation of momentum," Progress In Electromagnetics Research, Vol. 116, 81-106, 2011.

    6. Liu, L., J. Sun, X. Fu, J. Zhou, Q. Zhao, B. Fu, J. Liao, and D. Lippens, "Artificial magnetic properties of dielectric metamaterials in terms of effective circuit model," Progress In Electromagnetics Research, Vol. 116, 159-170, 2011.

    7. Liu, S.-H. and L.-X. Guo, "Negative refraction in an anisotropic metamaterial with a rotation angle between the principal axis and the planar interface," Progress In Electromagnetics Research, Vol. 115, 243-257, 2011.

    8. Valagiannopoulos, C. A., "Electromagnetic scattering of the field of a metamaterial slab antenna by an arbitrarily positioned cluster of metallic cylinders," Progress In Electromagnetics Research, Vol. 114, 51-66, 2011.

    9. Feng, T., Y. Li, H. Jiang, W. Li, F. Yang, X. Dong, and H. Chen, "Tunable single-negative metamaterials based on microstrip transmission line with varactor diodes loading," Progress In Electromagnetics Research, Vol. 120, 35-50, 2011.

    10. He, X.-J., Y. Wang, J. Wang, T. Gui, and Q. Wu, "Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle," Progress In Electromagnetics Research, Vol. 115, 381-397, 2011.

    11. Shao, J., H. Zhang, Y. Lin, and H. Xin, "Dual-frequency electromagnetic cloaks enabled by LC-based metamaterial circuits," Progress In Electromagnetics Research, Vol. 119, 225-237, 2011.
    doi:10.2528/PIER11052507

    12. Wang, B. and K.-M. Huang, "Spatial microwave power combining with anisotropic metamaterials," Progress In Electromagnetics Research, Vol. 114, 195-210, 2011.

    13. Xu, S., L. Yang, L. Huang, and H. Chen, "Experimental measurement method to determine the permittivity of extra thin materials using resonant metamaterials," Progress In Electromagnetics Research, Vol. 120, 327-337, 2011.

    14. Zhou, B., H. Li, X. Zou, and T.-J. Cui, "Broadband and high-gain planar Vivaldi antennas based on inhomogeneous anisotropic zero-index metamaterials," Progress In Electromagnetics Research, Vol. 120, 235-247, 2011.

    15. Zhou, H., F. Ding, Y. Jin, and S. He, "Terahertz metamaterial modulators based on absorption," Progress In Electromagnetics Research, Vol. 119, 449-460, 2011.
    doi:10.2528/PIER11061304

    16. Luukkonen, O., M. G. Silveirinha, A. B. Yakovlev, C. R. Simovski, I. S. Nefedov, and S. A. Tretyakov, "Effects of spatial dispersion on reflection from mushroom-type artificial impedance surfaces," IEEE Trans. on Microwave Theory and Tech., Vol. 57, No. 11, 2692-2699, Nov. 2009.
    doi:10.1109/TMTT.2009.2032458

    17. Smith, D. R. and J. B. Pendry, "Homogenization of metamaterials by field averaging (invited paper)," J. Opt. Soc. Am. B, Vol. 23, 391-403, 2006.
    doi:10.1364/JOSAB.23.000391

    18. Erentok, A. and R. W. Ziolkowski, "HFSS modeling of a dipole antenna enclosed in an epsilon-negative (ENG) metamaterial shell," IEEE Antennas and Propagation Society International Symposium, 22-25, Washigton DC, USA, Jul. 2005.

    19. Caloz, C., C.-C. Chang, and T. Itoh, "Full-wave verification of the fundamental properties of left-handed materials in waveguide configurations," J. Appl. Physics, Vol. 90, No. 11, 5483-5486, 2001.
    doi:10.1063/1.1408261

    20. Gurel, L., O. Ergul, A. Unal, and T. Malas, "Fast and accurate analysis of large metamaterial structures using the multilevel fast multipole algorithm," Progress In Electromagnetics Research, Vol. 95, 179-198, 2009.
    doi:10.2528/PIER09060106

    21. Jin, J., The Finite Element Method in Electromagnetics, John Wiley & Sons, New York, 1993.

    22. Cevini, G., G. Oliveri, and M. Raffetto, "Further comments on the performances of finite element simulators for the solution of electromagnetic problems involving metamaterials ," Microw. Opt. Tech. Lett., Vol. 48, No. 12, 2524-2529, Dec. 2006.
    doi:10.1002/mop.22008

    23. Oliveri, G. and M. Raffetto, "A warning about metamaterials for users of frequency-domain numerical simulators," IEEE Trans. on Antennas and Propag., Vol. 56, No. 3, 792-798, Mar. 2008.
    doi:10.1109/TAP.2008.916955

    24. Raffetto, M., "Ill posed waveguide discontinuity problem involving metamaterials with impedance boundary conditions on the two ports," IET Proc. Sci. Measur. Tech., Vol. 1, No. 5, 221-239, Sept. 2007.

    25. Oliveri, G. and M. Raffetto, "An assessment by a commercial software of the accuracy of electromagnetic finite element simulators in the presence of metamaterials," The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, COMPEL, Vol. 27, No. 6, 1260-1272, 2008.
    doi:10.1108/03321640810905747

    26. Oliveri, G. and M. Raffetto, Accuracy of finite difference frequency domain methods in the presence of effective metamaterials, Proceedings of the European Microwave Conference, 27-31, Amsterdam, NL, Oct. 2008.

    27. Bozza, G., G. Oliveri, and M. Raffetto, "Unusual ill-posed waveguide discontinuity problems: a comparison of frequency domain numerical methods," 9th International Workshop on Finite Elements for Microwave Engineering, 8-9, Bonn, Germany, May 2008.

    28. Clemens, M. and T. Weiland, "Discrete electromagnetism with the finite integration technique," Progress In Electromagnetic Research, Vol. 32, 65-87, 2001.
    doi:10.2528/PIER00080103

    29. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, Boston, 2000.

    30. COMSOL, Inc., COMSOL multiphysics 3.4, Jul. 2008, http://-www.comsol.com/.

    31. Cevini, G., G. Oliveri, and M. Raffetto, "Performances of electromagnetic finite element simulators in the presence of three-dimensional double negative scatterers," IET Proc. Microwav. Antennas Propag., Vol. 1, No. 3, 737-745, Jun. 2007.
    doi:10.1049/iet-map:20060293

    32. Yee, K., "Numerical solution of inital boundary value problems involving Maxwell's equations in isotropic media ," IEEE Trans. on Antennas and Propag., Vol. 14, No. 3, 302-307, May 1966.
    doi:10.1109/TAP.1966.1138693

    33. Clemens, M. and T. Weiland, "Numerical algorithms for the FDiTD and FDFD simulation of slowly varying electromagnetic fields," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 12, No. 1-2, 3-22, 1999.
    doi:10.1002/(SICI)1099-1204(199901/04)12:1/2<3::AID-JNM326>3.0.CO;2-5

    34. Champagne, N. J., J. G. Berryman, and H. M. Buettner, "FDFD: A 3D finite-difference frequency-domain code for electromagnetic induction tomography," J. Comp. Physics, Vol. 170, No. 2, 830-848, Jul. 2001.
    doi:10.1006/jcph.2001.6765

    35. Collin, R. E., Foundations for Microwave Engineering, McGraw-Hill, New York, 1992.

    36. Caorsi, S., A. Massa, M. Pastorino, and A. Rosani, "Microwave medical imaging: Potentialities and limitations of a stochastic optimization technique," IEEE Trans. on Microw. Theory and Tech., Vol. 52, No. 8, 1909-1916, Aug. 2004.
    doi:10.1109/TMTT.2004.832016

    37. Oliveri, G., P. Rocca, and A. Massa, "A bayesian compressive sampling-based inversion for imaging sparse scatterers," IEEE Trans. on Geosci. and Remote Sens., Vol. 49, No. 10, 3993-4006, Oct. 2011.
    doi:10.1109/TGRS.2011.2128329

    38. Oliveri, G., Y. Zhong, X. Chen, and A. Massa, "Multi-resolution subspace-based optimization method for inverse scattering," J. Optical Soc. Am. A, Vol. 40, No. 10, 2057-2069, Oct. 2011.

    39. Rocca, P., M. Benedetti, M. Donelli, D. Franceschini, and A. Massa, "Evolutionary optimization as applied to inverse scattering problems," Inverse Probl., Vol. 25, No. 12, 1-41, Dec. 2009.
    doi:10.1088/0266-5611/25/12/123003

    40. Rocca, P., G. Oliveri, and A. Massa, "Differential evolution as applied to electromagnetics," IEEE Antennas Propag. Mag., Vol. 53, No. 1, 38-49, Feb. 2011.
    doi:10.1109/MAP.2011.5773566