Vol. 122

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2011-11-22

Design and Optimization of Low RCS Patch Antennas Based on a Genetic Algorithm

By Xinyue Zhu, Wei Shao, Jia-Lin Li, and Yu-Liang Dong
Progress In Electromagnetics Research, Vol. 122, 327-339, 2012
doi:10.2528/PIER11100703

Abstract

In this article, a genetic algorithm (GA) is employed to the design of low radar cross section (RCS) patch antennas. Combined with the high frequency simulation software (HFSS) for antenna simulations, the GA performs the optimization of geometric parameters. In order to reduce the RCS while holding the satisfying radiation performance of antennas, the radiation model and scattering model are respectively calculated. The combination of proportionate selection and elitist model for the selection strategy is used to speed up the convergence of the GA. Two-point crossover is adopted to accelerate the converging speed and results in more fit individuals. Moreover, the whole design procedure is auto-controlled by programming the VBScript in the HFSS. Two examples of low RCS slot antennas are provided to verify the accuracy and efficiency of the proposed method.

Citation


Xinyue Zhu, Wei Shao, Jia-Lin Li, and Yu-Liang Dong, "Design and Optimization of Low RCS Patch Antennas Based on a Genetic Algorithm," Progress In Electromagnetics Research, Vol. 122, 327-339, 2012.
doi:10.2528/PIER11100703
http://jpier.org/PIER/pier.php?paper=11100703

References


    1. Jiang, W., T. Hong, Y. Liu, S.-X. Gong, Y. Guan, and S. Cui, "A novel technique for radar cross section reduction of printed antennas," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 1, 51-60, 2010.
    doi:10.1163/156939310790322145

    2. Hong, T., L.-T. Jiang, Y.-X. Xu, S.-X. Gong, and W. Jiang, "Radiation and scattering analysis of a novel circularly polarized slot antenna," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 13, 1709-1720, 2010.

    3. Xu, H.-Y., H. Zhang, K. Lu, and X.-F. Zeng, "A holly-leaf-shaped monopole antenna with low RCS for UWB application," Progress In Electromagnetics Research, Vol. 117, 35-50, 2011.

    4. Xu, H.-Y., H. Zhang, X. Yin, and K. Lu, "Ultra-wideband Koch fractal antenna with low backscttering cross section," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17-18, 2615-2623, 2010.
    doi:10.1163/156939310793675790

    5. Gonzalez, C. G., Y. Alvarez Lopez, A. D. Casas, and F. Las-Heras Andres, "Characterization of antenna interaction with scatterers by means of equivalent currents," Progress In Electromagnetics Research, Vol. 116, 185-202, 2011.

    6. Knot, E. F., J. F. Sbaeffer, and M. T. Tuley, Radar Cross Section, 2nd Ed., Artech House, London, 1993.

    7. Zhao, S.-C., B.-Z. Wang, and Q.-Q. He, "Broadband cross section reduction of a rectangular patch antenna," Progress In Electromagnetics Research, Vol. 79, 263-275, 2008.
    doi:10.2528/PIER07101002

    8. Kumar, R. and P. Malathi, "Design of CPW-fed ultra wideband fractal antenna and backscattering reduction," Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 9, No. 1, 10-19, 2010.

    9. Misran, N., R. Cahill, and V. F. Fusco, "RCS reduction technique for reflectarray antennas," Electronics Letters, Vol. 39, No. 23, 1630-1632, 2003.
    doi:10.1049/el:20031070

    10. Ren, L.-S., Y.-C. Jiao, J.-J. Zhao, and F. Li, "RCS reduction for a FSS-backed reflectarray using a ring element," Progress In Electromagnetics Research Letters, Vol. 26, 115-123, 2011.
    doi:10.2528/PIERL11071201

    11. Zheng, Q.-R., Y.-M. Yan, X.-Y. Cao, and N.-C. Yuan, "High impedance ground plane (HIGP) incorporated with resistance for radar cross section (RCS) reduction of antenna," Progress In Electromagnetics Research, Vol. 84, 307-319, 2008.
    doi:10.2528/PIER08072003

    12. Oraizi, H. and A. Abdolali, "Combination of MLS, GA & CG for the reduction of RCS of multilayered cylindrical structures composed of dispersive metamaterials," Progress In Electromagnetics Research B, Vol. 3, 227-253, 2008.
    doi:10.2528/PIERB07120803

    13. Wang, W., S. Gong, X. Wang, Y. Guan, and W. Jiang, "Differential evolution algorithm and method of moments for the design of low-RCS antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 295-298, 2010.
    doi:10.1109/LAWP.2010.2047837

    14. Rahmat-Samii, Y. and E. Michielssen, Electromagnetic optimization by Genetic Algorithms, John Wiley & Sons, New York, 1999.

    15. Xu, O., "Collimation lens design using AI-GA technique for Gaussian radiators with arbitrary aperture field distribution," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 5-6, 743-754, 2011.
    doi:10.1163/156939311794827113

    16. Jian, L., G. Xu, J. Song, H. Xue, D. Zhao, and J. Liang, "Optimum design for improving modulating-effect of coaxial magnetic gear using response surface methodology and genetic algorithm," Progress In Electromagnetics Research, Vol. 116, 297-312, 2011.

    17. Reza, A. W., M. S. Sarker, and K. Dimyati, "A novel integrated mathematical approach of ray-tracing and genetic algorithm for optimizing indoor wireless coverage," Progress In Electromagnetics Research, Vol. 110, 147-162, 2010.
    doi:10.2528/PIER10091701

    18. Kerkhoff, A. J., R. L. Rogers, and H. Ling, "Design and analysis of planar monopole antennas using a genetic algorithm approach," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 10, 2709-2718, 2004.
    doi:10.1109/TAP.2004.834429

    19. Kerkhoff, A. J. and H. Ling, "Design of a band-notched planar monopole antenna using genetic algorithm optimization," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 3, 604-610, 2007.
    doi:10.1109/TAP.2007.891563

    20. Jones, E. A. and W. T. Joines, "Design of Yagi-Uda antennas using genetic algorithms," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 9, 1386-1392, 1997.
    doi:10.1109/8.623128

    21. Kuwahara, Y., "Multiobjective optimization design of Yagi-Uda antenna," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 6, 1984-1992, 2005.
    doi:10.1109/TAP.2005.848501

    22. Villegas, F. J., T. Cwik, Y. Rahmat-Samii, and M. Manteghi, "A parallel electromagnetic genetic algorithm optimization (EGO) application for patch antenna design ," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 9, 2424-2435, 2004.
    doi:10.1109/TAP.2004.834071

    23. Pu, T., K.-M. Huang, B. Wang, and Y. Yang, "Application of micro-genetic algorithm to the design of matched high gain patch antenna with zero-refractive-index matematerial lens," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8-9, 1207-1217, 2010.
    doi:10.1163/156939310791586025

    24. Zhang, Y.-J., S.-X. Gong, X. Wang, and W.-T. Wang, "A hybrid genetic-algorithm space-mapping method for the optimization of broadband aperture-coupled asymmetrical U-shaped slot antennas," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 16, 2139-2153, 2010.
    doi:10.1163/156939310793699118

    25. Dadgarnia, A. and A. A. Heidari, "A fast systematic approach for microstrip antenna design and optimization using ANFIS and GA," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 16, 2207-2221, 2010.
    doi:10.1163/156939310793699037

    26. Allard, R. J., D. H. Werner, and P. L. Werner, "Radiation pattern synthesis for arrays of conformal antennas mounted on arbitrarily-shaped three-dimensional platforms using genetic algorithms," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 5, 1054-1062, 2003.
    doi:10.1109/TAP.2003.811510

    27. Villegas, F. J., "Parallel genetic-algorithm optimization of shaped beam coverage areas using planar 2-D phased arrays," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 6, 1745-1753, 2007.
    doi:10.1109/TAP.2007.898601

    28. Jain, R. and G. S. Mani, "Dynamic thinning of antenna array using genetic algorithm," Progress In Electromagnetics Research B, Vol. 32, 1-20, 2011.
    doi:10.2528/PIERB11042203

    29. Siakavara, K., "Novel fractal antenna arrays for satellite networks: Circular ring Sierpinski carpet arrays optimized by genetic algorithms," Progress In Electromagnetics Research, Vol. 103, 115-138, 2010.
    doi:10.2528/PIER10020110