Vol. 123

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2011-12-12

Design of a V-Band High-Power Sheet-Beam Coupled-Cavity Traveling-Wave Tube

By Yang Liu, Jin Xu, Yan-Yu Wei, Xiong Xu, Fei Shen, Minzhi Huang, Tao Tang, Wen-Xiang Wang, Yu-Bin Gong, and Jinjun Feng
Progress In Electromagnetics Research, Vol. 123, 31-45, 2012
doi:10.2528/PIER11092906

Abstract

The design and analysis of a high-power wideband sheet-beam coupled-cavity traveling-wave tube operating at V-band is presented. The interaction circuit employs three-slot doubly periodic staggered-ladder coupled-cavity slow-wave structure, and a 5 : 1 aspect-ratio sheet electron beam is used to interact with the circuit. Combined with design of the well-matched input and output couplers, a 3-D particle-in-cell model of the sheet-beam coupled-cavity traveling-wave tube is constructed. The electromagnetic characteristics and the beam-wave interaction of the tube are investigated. From our calculations, this tube can produce saturated output power over 630 Watts ranging from 58 GHz to 64 GHz when the cathode voltage and beam current are set to 13.2 kV and 300 mA, respectively. The corresponding saturated gain and electron efficiency can reach over 32.5 dB and 15.9%. Compared with the circular beam devices, the designed sheet-beam TWT has absolute advantage in power capability, and also it is more competitive in bandwidth and electron efficiency.

Citation


Yang Liu, Jin Xu, Yan-Yu Wei, Xiong Xu, Fei Shen, Minzhi Huang, Tao Tang, Wen-Xiang Wang, Yu-Bin Gong, and Jinjun Feng, "Design of a V-Band High-Power Sheet-Beam Coupled-Cavity Traveling-Wave Tube," Progress In Electromagnetics Research, Vol. 123, 31-45, 2012.
doi:10.2528/PIER11092906
http://jpier.org/PIER/pier.php?paper=11092906

References


    1. Kornfeld, G. K., E. Bosch, W. Gerum, and G. Fleury, "60-GHz space TWT to address future market," IEEE Trans. Electron Devices, Vol. 48, No. 1, Jan. 2001.
    doi:10.1109/16.892169

    2. Kesari, V., "Beam-absent analysis of disc-loaded-coaxial waveguide for application in gyro-TWT (Part-1)," Progress In Electromagnetics Research, Vol. 109, 211-227, 2010.
    doi:10.2528/PIER10071305

    3. Kesari, V., "Beam-present analysis of disc-loaded-coaxial waveguide for application in gyro-TWT (Part-2)," Progress In Electromagnetics Research, Vol. 109, 229-243, 2010.
    doi:10.2528/PIER10071505

    4. Kesari, V. and J. P. Keshari, "Analysis of a circular waveguide loaded with dielectric and metal discs," Progress In Electromagnetics Research, Vol. 111, 253-269, 2011.
    doi:10.2528/PIER10110207

    5. Mustafa, F. and A. M. Hashim, "Properties of electromagnetic fields and effective permittivity excited by drifting plasma waves in semiconductor-insulator interface structure and equivalent transmission line technique for multi-layered structure," Progress In Electromagnetics Research, Vol. 104, 403-425, 2010.
    doi:10.2528/PIER10041504

    6. Mineo, M., A. Di Carlo, and C. Paoloni, "Analytical design method for corrugated rectangular waveguide SWS THz vacuum tubes," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17--18, 2479-2494, 2010.
    doi:10.1163/156939310793675745

    7. Li, Z., J. H. Wang, F. Li, Z. Zhang, and M. Chen, "A new insight into the radiation mechanism of fast and slow traveling waves," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 13, 1874-1885, 2011.
    doi:10.1163/156939311797454006

    8. Shi, Z. J., Z. Q. Yang, F. Lan, G. Xi, F. Tao, and Z. Liang, "Investigation of a 30-GHz relativistic diffraction generator with a coaxial reflector," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17--18, 2453-2462, 2010.
    doi:10.1163/156939310793675682

    9. Malek, F., "The analytical design of a folded waveguide traveling wave tube and small signal gain analysis using Madey's theorem," Progress In Electromagnetics Research, Vol. 98, 137-162, 2009.
    doi:10.2528/PIER09092604

    10. Wilson, J. D., P. Ramins, and D. A. Force, "A high-effciency 59 to 64 GHz TWT for intersatellite communications," Proc. IEDM Tech. Dig., 585-588, 1991.

    11. Liu, Y., Y. B. Gong, Y. Y. Wei, J. Xu, Z. Y. Duan, and W. X. Wang, Design of a 100-W V-band coupled-cavity, China-Japan Joint Microwave Conference (CJMW), 458-460, Hangzhou, China, 2011.

    12. Cooke, S. J., B. Levush, T. M. Antonsen, and Jr., A coupled-cavity slow-wave structure for sheet-beam devices, Proc. IEEE Int. Vac. Electron. Conf., 487-488, Monterey, CA, 2006.

    13. Larsen, P. B., D. K. Abe, S. J. Cooke, B. Levush, T. M. Antonsen, Jr., and R. E. Myers, "Characterization of a Ka-band sheet-beam coupled-cavity slow-wave structure," IEEE Trans. Plasma Sci., Vol. 38, No. 6, 1244-1254, Jun. 2010.
    doi:10.1109/TPS.2010.2043690

    14. Shin, Y. M., L. R. Barnett, N. C. Luhmann, and Jr., "Phase-shift traveling-wave-tube circuit for ultrawideband high-power submillimeter-wave generation," IEEE Trans. Electron Devices, Vol. 56, No. 5, 706-712, May 2009.
    doi:10.1109/TED.2009.2015404

    15. Han, S. T., K. H. Jang, J. K. So, J. I. Kim, Y. M. Shin, N. M. Ryskin, S. S. Chang, and G. S. Park, "Low-voltage operation of ka-band folded waveguide traveling-wave tube," IEEE Trans. Plasma Sci., Vol. 32, No. 1, 60-66, Feb. 2004.
    doi:10.1109/TPS.2004.823978

    16. Kim, H. J., H. J. Kim, and J. J. Choi, "MAGIC3D simulations of a 500-W Ka-band coupled-cavity traveling-wave tube," IEEE Trans. Electron Devices, Vol. 56, No. 1, Jan. 2009.

    17. Ansoft HFSS User's Reference, Ansoft Corp. [Online] Available: http://www.ansoft.com.cn/.

    18. CST MWS Tutorials, CST Corp. [Online] Available: http://www.cst-china.cn/.

    19. CST PS Tutorials, CST Corp. [Online] Available: http://www.cst-china.cn/,.

    20. James, B. G. and P. Kolda, "A ladder circuit coupled-cavity TWT at 80--100 GHz," Proc. IEDM Tech. Dig., Vol. 32, 494-497, 1986.

    21. Booske, J. H., M. C. Converse, C. L. Kory, C. T. Chevalier, D. A. Gallagher, K. E. Kreischer, V. O. Heinen, and S. Bhattacharjee, "Accurate parametric modeling of folded waveguide circuits for millimeter wave traveling wave tubes," IEEE Trans. Electron Devices, Vol. 52, No. 5, 685-693, May 2005.
    doi:10.1109/TED.2005.845798

    22. Pierce, J. R., Traveling-wave Tubes, Van Nostrand, New York, 1965.

    23. Christie, V. L., M. Sumathy, L. Kumar, and S. Prasad, "Optimization of waveguide coupler for coupled-cavity TWT using artificial neural network," Proc. IEEE International Vacuum Electronics Conference (IVEC), 263-264, 2010.
    doi:10.1109/IVELEC.2010.5503501

    24. Kageyama, T., "The design of the transition region in coupled-cavity TWT," Proc. IEEE International Vacuum Electronics Conference (IVEC), 102-103, 2002.

    25. Larsen, P. B., D. K. Abe, B. Levush, T. M. Antosen, and Jr., "Coupling a waveguide input to a sheet-beam coupled-cavity slowe-wave structure," Proc. IEEE International Vacuum Electronics Conference (IVEC), 209-210, 2011.
    doi:10.1109/IVEC.2011.5746949

    26. Wilson, J. D. and C. L. Kory, "Simulation of cold-test parameters and RF output power for a coupled-cavity traveling-wave tube," IEEE Trans. Electron Devices, Vol. 42, No. 11, Nov. 1995.

    27. Tischer, F. J., "Excess conduction losses at millimeter wave-lengths," IEEE Trans. Microw. Theory Tech., Vol. 24, 853-858, Nov. 1976.
    doi:10.1109/TMTT.1976.1128973

    28. Gilmour, A. S., Jr., Principles of Traveling-Wave Tubes, Artech House, Boston, MA, 1994.

    29. Nguyen, K. T., J. A. Pasour, T. M. Antonsen, Jr., P. B. Larsen, J. J. Petillo, and B. Levush, "Intense sheet electron beam transport in a uniform solenoidal magnetic field," IEEE Trans. Electron Devices, Vol. 55, No. 5, 744-752, May 2009.
    doi:10.1109/TED.2009.2015420

    30. Wilson, J. D., "Design of high-efficiency wide-bandwidth coupled-cavity traveling-wave tube phase velocity tapers with simulated annealing algorithms," IEEE Trans. Electron Devices, Vol. 48, No. 1, Jan. 2001.
    doi:10.1109/16.892174