Vol. 122

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2011-11-14

An ANN-Based Small-Signal Equivalent Circuit Model for MOSFET Device

By Nan Li, Xiuping Li, and Shanguo Quan
Progress In Electromagnetics Research, Vol. 122, 47-60, 2012
doi:10.2528/PIER11092103

Abstract

An ANN-based small-signal equivalent circuit model for 130 nm MOSFET device is proposed in this paper. The proposed model combines the conventional small-signal equivalent circuit model and artificial neural networks (ANNs) to achieve higher accuracy. Good agreement is obtained between proposed model and measured results confirming the validity and effectiveness of proposed model.

Citation


Nan Li, Xiuping Li, and Shanguo Quan, "An ANN-Based Small-Signal Equivalent Circuit Model for MOSFET Device," Progress In Electromagnetics Research, Vol. 122, 47-60, 2012.
doi:10.2528/PIER11092103
http://jpier.org/PIER/pier.php?paper=11092103

References


    1. Morifuji, E., H. S. Momose, T. Ohguro, T. Yoshitomi, H. Kimijima, F. Matsuoka, M. Kinugawa, Y. Katsumata, and H. Iwai, "Future perspective and scaling down roadmap for RF CMOS," Symposium on VLSL Technology Digest of Technical Papers, 165-166, 1999.

    2. Cheng, Y. H., M. J. Deen, and C. H. Chen, "MOSFET modeling for RF IC design," IEEE Trans. Electron Devices, Vol. 52, 1286-1303, 2005.
    doi:10.1109/TED.2005.850656

    3. Chan, Y.-J., C.-H. Huang, C.-C. Weng, and B.-K. Liew, "Characteristics of deep-submicrometer MOSFET and its empirical nonlinear RF model," IEEE Trans. Microwave Theory Tech., Vol. 46, 611-615, May 1998.
    doi:10.1109/22.668671

    4. Yoon, J., H. Seo, I. Choi, and B. Kim, "Wideband LNA using a negative GM cell for improvement of linearity and noise figure," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 5-6, 619-630, 2010.
    doi:10.1163/156939310791036412

    5. Lovelace, D., J. Costa, and N. Camilleri, "Extracting small-signal model parameters of silicon MOSFET transistors," IEEE MTT-S Dig., 865-868, San Diego, CA, 1994.

    6. Biber, C. E., M. L. Schmatz, and T. Morf, "Improvements on a MOSFET model for nonlinear RF simulation," IEEE MTTS Dig., Vol. 865, No. 868, Denver, CO, 1997.

    7. Lee, S., Y. H. Kyu, C. S. Kim, J. G. Koo, and K. S. Nam, "A novel approach to extracting small-signal model parameters of silicon MOSFET's," IEEE Microw. Guid. Wave Lett., Vol. 7, 75-77, 1997.
    doi:10.1109/75.556037

    8. Zhang, Q. J., K. C. Gupta, and V. K. Devabhaktuni, "Artificial neural networks for RF and microwave design: From theory to practice," IEEE Trans. Microwave Theory Tech., Vol. 51, 1339-1350, 2003.
    doi:10.1109/TMTT.2003.809179

    9. Li, X., J. Gao, and G. Boeck, "Printed dipole antenna design by artificial neural network modeling for RFID application," International Journal of RF and Microwave Computer-aided Engineering, Vol. 16, No. 6, 607-611, 2006.
    doi:10.1002/mmce.20183

    10. Li, X., J. Gao, J.-G. Yook, and X. Chen, "Bandpass filter design by artificial neural network modeling," Asia-Pacific Microwave Conference, Vol. 2, 713-716, 2005.

    11. Li, X. and J. Gao, "Pad modeling by using artificial neural network," Progress In Electromagnetics Research, Vol. 74, 167-180, 2007.
    doi:10.2528/PIER07041201

    12. Li, X., Y. Li, and J. Zhao, "Ann-based pad modeling technique for MOS-FET devices," Progress In Electromagnetics Research, Vol. 118, 303-319, 2011.
    doi:10.2528/PIER11042702

    13. Li, X., J. Gao, and G. Boeck, "Microwave nonlinear device modeling using artificial neural network," Semicond. Sci. Technol., Vol. 21, 833-840, 2006.
    doi:10.1088/0268-1242/21/7/001

    14. Mohamed, M. D. A., E. A. Soliman, and M. A. ElGamal, "Optimization and characterization of electromagnetically coupled patch antennas using RBF neural networks," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 8, 1101-1114, 2006.
    doi:10.1163/156939306776930240

    15. Jin, L., C. L. Ruan, and L. Y. Chun, "Design E-plane bandpass filter based on EM-ANN model," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 8, 1061-1069, 2006.
    doi:10.1163/156939306776930259

    16. Acikgoz, H., Y. L. Bihan, O. Meyer, and L. Pichon, "Microwave characterization of dielectric materials using bayesian neural networks," Progress In Electromagnetics Research C, Vol. 3, 169-182, 2008.
    doi:10.2528/PIERC08030603

    17. Vakula, D. and N. V. S. N. Sarma, "Fault diagnosis of planar antenna arrays using neural networks," Progress In Electromagnetics Research M, Vol. 6, 35-46, 2009.
    doi:10.2528/PIERM09011204

    18. Michalski, J. J., "Artificial neural networks approach in microwave filter tuning," Progress In Electromagnetics Research M, Vol. 13, 173-188, 2010.
    doi:10.2528/PIERM10053105

    19. Zhang, L., J. Xu, M. C. E. Yagoub, R. T. Ding, and Q. J. Zhang, "Efficient analytical formulation and sensitivity analysis of neurospace mapping for nonlinear microwave device modeling," IEEE Trans. Microwave Theory Tech., Vol. 53, 2752-2767, 2005.
    doi:10.1109/TMTT.2005.854190

    20. Kim, C.-H., C. S. Kim, H. K. Yu, and K. S. Nam, "Unique extraction of substrate parameters of common-source MOSFET's," IEEE Microwave Guided Wave Lett., Vol. 9, 108-110, Mar. 1999.

    21. Chang, K. M. and H. P. Wang, "A new small-signal MOSFET model and parameter extraction method for RF IC's application," Microelectron J., Vol. 35, 749-759, 2004.
    doi:10.1016/j.mejo.2004.06.001

    22. Gao, J. and A. Werthof, "Direct parameter extraction method for deep submicrometer metal oxide semiconductor field effect transistor small signal equivalent circuit," IET Microwaves Antennas Propag., Vol. 3, 564-571, 2009.
    doi:10.1049/iet-map.2008.0162

    23. Angelov, I., H. Zirath, and N. Rorsman, "A new empirical nonlinear model for HEMT and MESFET devices," IEEE Trans. Microwave Theory Tech., Vol. 40, 2258-2266, 1992.
    doi:10.1109/22.179888

    24. Sirakawa, K., M. Shimiz, N. Okubo, and Y. Daido, "A large signal characterization of an HEMT using a multilayered neural network," IEEE Trans. Miccrowave Theory Tech., Vol. 45, 1630-1633, 1997.
    doi:10.1109/22.622932

    25. Sirakawa, K., M. Shimiz, N. Okubo, and Y. Daido, "Structural determination of multilayered large signal neural-network HEMT model," IEEE Trans. Microwave Theory Tech., Vol. 46, 1367-1375, 1998.
    doi:10.1109/22.721137

    26. Yoon, J., H. Seo, I. Choi, and B. Kim, "Wideband LNA using a negative GM cell for improvement of linearity and noise figure," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 5-6, 619-630, 2010.
    doi:10.1163/156939310791036412

    27. Lee, M.-W. and S.-H. Kam, "A highly efficient three-stage doherty power amplifier with flat gain for WCDMA applications," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17-18, 2537-2545, 2010.
    doi:10.1163/156939310793675619

    28. Shi, X., K. S. Yeo, W. M. Lim, M. A. Do, and C. C. Boon, "A spice compatible model of on-wafer coupled interconnects for CMOS RFICS," Progress In Electromagnetics Research, Vol. 102, 287-299, 2010.
    doi:10.2528/PIER10010608

    29. Sacha, G. M., F. B. Rodriguez, E. Serrano, and P. Varona, "Generalized image charge method to calculate electrostatic magnitudes at the nanoscale powered by artificial neural networks," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8-9, 1145-1155, 2010.
    doi:10.1163/156939310791586160