Vol. 122

Latest Volume
All Volumes
All Issues

Electrically Tunable Fabry-Perot Resonator Based on Microstructured Si Containing Liquid Crystal

By Vladimir A. Tolmachev, Vasily A. Melnikov, Аnna V. Baldycheva, Kevin Berwick, and Tatiana S. Perova
Progress In Electromagnetics Research, Vol. 122, 293-309, 2012


We have built Fabry-Pérot resonators based on microstructured silicon and a liquid crystal. The devices exhibit tuning of the resonance peaks over a wide range, with relative spectral shifts of up to Δλ/λ = 10%. In order to achieve this substantial spectral shift, cavity peaks of high order were used. Under applied voltages of up to 15 V, a variation in the refractive index of the nematic liquid crystal E7 from ΔnLC = 0.12 to ΔnLC = 0.17 was observed. These results may have practical applications in the near-, mid and far-infrared range.


Vladimir A. Tolmachev, Vasily A. Melnikov, Аnna V. Baldycheva, Kevin Berwick, and Tatiana S. Perova, "Electrically Tunable Fabry-Perot Resonator Based on Microstructured Si Containing Liquid Crystal," Progress In Electromagnetics Research, Vol. 122, 293-309, 2012.


    1. Jalali, B. and S. Fathpour, "Silicon photonics," J. of Lightwave Techn., Vol. 24, No. 12, 4600-4615, 2005.

    2. Vahala, K. J., "Optical microcavities," Nature, Vol. 424, 839-846, 2003.

    3. Kaklamani, D. I., "Full-wave analysis of a Fabry-Perot type resonator," Progress In Electromagnetics Research, Vol. 24, 279-310, 1999.

    4. Busch, K. and S. John, "Liquid-crystal photonic-band-gap materials: The tunable electromagnetic vacuum," Phys. Rev. Lett., Vol. 83, No. 5, 967-970, 1999.

    5. Ghulinyan, M., C. J. Oton, G. Bonetti, Z. Gaburro, and L. Pavesi, "Free-standing porous silicon single and multiple optical cavities," J. Appl. Phys., Vol. 93, No. 12, 9724, 2003.

    6. Weiss, S. M. and P. M. Faushet, "Electrically porous silicon active mirrors," Phys. Stat. Sol. (a), Vol. 197, No. 2, 556-560, 2003.

    7. Ozaki, R., T. Matsui, M. Ozaki, and K. Yoshino, "Optical property of electro-tunable defect mode in 1D periodic structure with (liquid) crystal defect layer," Electronics and Communications in Japan, Part 2, Vol. 87, No. 5, 24-31, 2004.

    8. Pucker, G., A. Mezzetti, M. Crivellari, P. Belluti, A. Lui, N. Daldosso, and L. Pavesi, "Silicon-based near-infrared tunable ¯lters ¯lled with positive or negative dielectric anisotropic liquid crystals ," J. Appl. Phys., Vol. 95, 767-769, 2004.

    9. Anderson, S. P., M. Haurylau, J. Zhang, and P. M. Fauchet, "Hybrid photonic crystal microcavity switches on SOI," Proc. SPIE, Vol. 6477, 647712-1-8, 2007.

    10. Tolmachev, V. A., V. A. Melnikov, V. Baldycheva, T. S. Perova, and G. I. Fedulova, "Design, fabrication and optical characterization of Fabry-Pérot tunable resonator based on microstructured Si and liquid crystal," Proc. SPIE, Vol. 7713, 771320-1, 2010.

    11. Joannopoulos, J. D., R. D. Meade, and R. D. Winn, Photonic Crystals, 184, Princeton University Press, 1995.

    12. Joannopoulos, J. D., S. G. Winn, and R. D. Meade, Photonic Crystals. Molding the Flow of Light, 2nd Ed., Princeton University Press, 2008.

    13. Azzam, R. M. A. and N. M. Bashara, Ellipsometry and Polarized Light, 334, Amsterdam, North-Holland, 1977.

    14. Palik, E. D., Handbook of Optical Constants of Solids, Academic Press, 1998.

    15. Khoo, L. C., "The infrared optical nonlinearities of nematic liquid crystals and novel two-wave mixing processes ," J. Mod. Opt., Vol. 37, No. 11, 1801-1813, 1990.

    16. Tolmachev, V. A., T. S. Perova, and K. Berwick, "Design criteria and optical characteristics of one-dimensional photonic crystals based on periodically grooved silicon," Appl. Opt., Vol. 42, 56-79, 2003.

    17. Tolmachev, V., T. Perova, E. Krutkova, and E. Khokhlova, "Elaboration of the gap map method for the design and analysis of one-dimensional photonic crystal structures ," Physica E: Low-dimensional Systems and Nanostructures, Vol. 41, 1122-1126, 2009.

    18. Baldycheva, A., T. Perova, and V. Tolmachev, "Formation of infrared regions of transparency in one-dimensional silicon photonic crystals," IEEE Photonics Technology Letters, Vol. 23, No. 4, 200-202, 2011.

    19. Tolmachev, V. A., T. S. Perova, and A. Baldycheva, "Transformaion of one-dimensional silicon photonic crystal into Fabry-Pérot resonator," Proc. SPIE, Vol. 7943, 79430E-1, 2011.

    20. Tolmachev, V. A., E. V. Astrova, J. A. Pilyugina, T. S. Perova, R. A. Moore, and J. K. Vij, "1D photonic crystal fabricated by wet etching of silicon," Optical Materials, Vol. 27, No. 5, 831-835, 2005.

    21. Tolmachev, V. A., T. S. Perova, E. V. Astrova, B. Z. Volchek, and J. K. Vij, "Vertically etched silicon as 1D photonic crystal," Phys. Stat. Solidi (a), Vol. 197, No. 2, 544-549, 2003.

    22. Data Sheet Licristal® E7, Merck KGaA, Germany, 2001.

    23. Tolmachev, V. A., S. A. Grudinkin, J. A. Zharova, V. A. Melnikov, E. V. Astrova, and T. S. Perova, "Electro-tuning of the photonic band gap in SOI-based structures infiltrated with liquid crystal," Proc. SPIE, Vol. 6996, 69961Z, 2008.

    24. Wu, S., U. Efron, and L. V. D. Hess, "Infrared birefringence of liquid crystals," App. Phys. Lett., Vol. 44, No. 11, 1033-1035, 1984.

    25. Perova, T. S., V. A. Tolmachev, and E. V. Astrova, "Tunable photonic structures based on silicon and liquid crystals (Invited)," Proc. SPIE, Vol. 6801, 68010W, 2008.

    26. Bruggeman, D. A. G., "Berechung verschiedener physikalisher Konstanten von heterogenen Substanzen," Ann. Phys., Vol. 24, 636-664, Leipzig, 1935.

    27. Lipson, A. and E. M. Yeatman, "A 1-D photonic band gap tunable optical filter in (110) silicon," J. of Microelectromechanical Systems, Vol. 16, No. 3, 521-527, 2007.

    28. Soref, R., "Mid-infrared photonics in silicon and germanium," Nature Photonics, Vol. 4, 495-497, 20101.

    29. Smolyakov, A. I., E. A. Fourkal, S. I. Krasheninnikov, and N. Sternberg, "Resonant modes and resonant transmission in multi-layer structures," Progress In Electromagnetics Research, Vol. 107, 293-314, 2010.

    30. Ni, J., B. Chen, S. L. Zheng, X.-M. Zhang, X.-F. Jin, and N. Chi, "Ultra-wideband on electrooptic phase modulator and phase-shift fiber Bragg grating," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 5-6, 795-802, 2010.

    31. Manzanares-Martinez, J., R. Archuleta-Garcia, P. Castro-Garay, D. Moctezuma-Enriquez, and E. Urrutia-Banuelos, "One-dimensional photonic heterostructure with broadband omnidirectional reflection," Progress In Electromagnetics Research, Vol. 111, 105-117, 2011.

    32. Wu, C.-J., Y.-C. Hsieh, and H.-T. Hsu, "Tunable photonic band gap in a doped semiconductor photonic crystal in near infrared region," Progress In Electromagnetics Research, Vol. 114, 271-283, 2011.

    33. Khalaj-Amirhosseini, M. and S. M. J. Razavi, "Wide-angle reflection wave polarizers using inhomogeneous planar layers," Progress In Electromagnetics Research M, Vol. 9, 9-20, 2009.

    34. Liu, Y. and Z. Lu, "Phase shift defect modes in one-dimensional asymmetrical photonic structures consisting of two rugate segments with different periodicities," Progress In Electromagnetics Research, Vol. 112, 257-272, 2011.

    35. Wu, C.-J., J.-J. Liao, and T.-W. Chang, "Tunable multilayer Fabry-Perot resonator using electro-optical defect layer," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 4, 531-542, 2010.

    36. Shchegolkov, D. Y., C. E. Heath, and E. I. Simakov, "Low loss metal diplexer and combiner based on a photonic band gap channel-drop filter at 109 GHz," Progress In Electromagnetics Research, Vol. 111, 197-212, 2011.

    37. Hsu, H.-T., M.-H. Lee, T.-J. Yang, Y.-C. Wang, and C.-J. Wu, "A multichanneled filter in a photonic crystal containing coupled defects," Progress In Electromagnetics Research, Vol. 117, 379-392, 2011.