Vol. 122
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-12-08
Axial-Flux Permanent-Magnet Motor Design for Electric Vehicle Direct Drive Using Sizing Equation and Finite Element Analysis
By
Progress In Electromagnetics Research, Vol. 122, 467-496, 2012
Abstract
The design process of a double-sided slotted TORUS axial-flux permanent-magnet (AFPM) motor suitable for direct drive of electric vehicle (EV) is presented. It used sizing equation and Finite Element Analysis (FEA). AFPM motor is a high-torque-density motor easily mounted compactly onto a vehicle wheel, fitting the wheel rim perfectly. A preliminary design is a double-sided slotted AFPM motor with 6 rotor poles for high torque-density and stable rotation. In determining the design requirements, a simple vehicle-dynamics model that evaluates vehicle performance through the typical cruising trip of an automobile was considered. To obtain, with the highest possible torque, the initial design parameters of the motor, AFPM's fundamental theory and sizing equation were applied. Vector Field Opera-3D 14.0 commercial software ran the FEA of the motor design, evaluating and enhancing accuracy of the design parameters. Results of the FEA simulation were compared with those obtained from the sizing equation; at no-load condition, the flux density at every part of the motor agreed. The motor's design meets all the requirements and limits of EV, and fits the shape and size of a classical-vehicle wheel rim. The design process is comprehensive and can be used for an arbitrary EV with an arbitrary cruising scenario.
Citation
Amin Mahmoudi, Nasrudin Abd Rahim, and Hew Wooi Ping, "Axial-Flux Permanent-Magnet Motor Design for Electric Vehicle Direct Drive Using Sizing Equation and Finite Element Analysis," Progress In Electromagnetics Research, Vol. 122, 467-496, 2012.
doi:10.2528/PIER11090402
References

1. Rahim, N. A., W. P. Hew, and A. Mahmoudi, "Axial-flux permanent-magnet brushless dc traction motor for direct drive of electric vehicle," International Review of Electrical Engineering, Vol. 6, No. 2, 760-769, April 2011.

2. Johansen, P. R., D. Patterson, C. O'Keefe, and J. Swenson, "The use of an axial flux permanent magnet in-wheel direct drive in an electric vehicle," Renewable Energy, Vol. 22, No. 1-3, 151-157, January-March 2001.
doi:10.1016/S0960-1481(00)00051-3

3. Kim, M. J., B. K. Kim, J. W. Moon, Y. H. Cho, D. H. Hwang, and D. S. Kang, "A method for diagnosis of induction machine fed by PWM vector control," International Journal of Applied Electromagnetics and Mechanics, Vol. 28, No. 1-2, 275-281, September 2008.

4. Nguyen, P. H., E. Hoang, and M. Gabsi, "Performance synthesis of permanent-magnet synchronous machines during the driving cycle of a hybrid electric vehicle," IEEE Transaction on Vehicular Technology, Vol. 60, No. 5, 1991-1998, June 2011.
doi:10.1109/TVT.2011.2118776

5. Dai, Y., L. Song, and S. Cui, "Development of PMSM drives of hybrid electric car applications," IEEE Transaction on Magnetics, Vol. 43, No. 1, 434-437, January 2007.
doi:10.1109/TMAG.2006.887718

6. Baoquan, K., L. Chunyan, and C. Shukang, "Flux-weakening-characteristic analysis of a new permanent-magnet synchronous motor used for electric vehicles," IEEE Transaction on Plasma Science, Vol. 39, No. 1, 511-515, January 2011.
doi:10.1109/TPS.2010.2076355

7. Choi, J. H., Y. D. Chun, P. W. Han, M. J. Kim, D. H. Koo, J. Lee, and J. S. Chun, "Design of high power permanent magnet motor with segment rectangular copper wire and closed slot opening on electric vehicles," IEEE Transaction on Magnetics, Vol. 46, No. 6, 2070-2073, June 2010.
doi:10.1109/TMAG.2010.2041908

8. Yang, Y. P., Y. P. Lah, and C. H. Cheung, "Design and control of axial-flux brushless DC wheel motors for electric vehicles-part I: Multiobjective optimal design and analysis," IEEE Transaction on Magnetics, Vol. 40, No. 4, 1873-1882, July 2004.
doi:10.1109/TMAG.2004.828164

9. Yang, Y. P., Y. P. Lah, and C. H. Cheung, "Design and control of axial-flux brushless DC wheel motors for electric vehicles-part II: Optimal current waveforms and performance test," IEEE Transaction on Magnetics, Vol. 40, No. 4, 1883-1891, July 2004.
doi:10.1109/TMAG.2004.828165

10. Rahman, K. M., N. R. Patel, T. G. Ward, J. M. Nagashima, F. Caricchi, and F. Crescimbini, "Application of direct-drive wheel motor for fuel cell electric and hybrid electric vehicle propulsion system," IEEE Transaction on Industry Applications, Vol. 42, No. 5, 1185-1192, September-October 2006.
doi:10.1109/TIA.2006.880886

11. Cavagnino, A., M. Lazzari, F. Profumo, and A. Tenconi, "A comparison between the axial flux and the radial flux structures for PM synchronous motors," IEEE Transaction on Industrial Applications, Vol. 37, No. 6, 1517-1524, November-December 2002.

12. Mahmoudi, A., N. A. Rahim, and W. P. Hew, "Axial-flux permanent-magnet machine modeling, design, simulation, and analysis," Scientific Research and Essay, Vol. 6, No. 12, 2525-2549, June 2011.

13. Mahmoudi, A., N. A. Rahim, and W. P. Hew, "Analytical method for determining axial-flux permanent-magnet machine sensitivity to design variables," International Review of Electrical Engineering, Vol. 5, No. 5, 2039-2048, September-October 2010.

14. Mahmoudi, A., N. A. Rahim, and W. P. Hew, "An analytical complementary FEA tool for optimizing of axial-flux permanent-magnet machines," International Journal of Applied Electromagnetics Machines, Vol. 37, No. 1, 19-34, September 2011.

15. Gieras, J. F., R. J. Wang, and M. J. Kamper, Axial Flux Permanent Magnet Brushless Machines, Springer Verla, 2008.

16. Mahmoudi, A., N. A. Rahim, and W. P. Hew, "TORUS and AFIR axial-flux permanent-magnet machines: A comparison via finite element analysis," International Review on Modelling and Simulations, Vol. 4, No. 2, 624-631, April 2011.

17. Gholamian, S. A., "Optimum design and manufacturing of axial °ux permanent magnet motor for electric vehicle application," Ph.D. Dissertation, K. N. Toosi Univ. Technology, Tehran, Iran, January 2008.

18. Huang, S., J. Luo, F. Leonardi, and T. A. Lipo, "A general approach to sizing and power density equations for comparison of electrical machines," IEEE Transaction on Industry Applications, Vol. 34, No. 1, 92-97, January-February 1998.
doi:10.1109/28.658727

19. Huang, S., J. Luo, F. Leonardi, and T. A. Lipo, "A comparison of power density for axial flux machines based on the general purpose sizing equation," IEEE Transaction on Energy Conversion, Vol. 14, No. 2, 185-192, January 1999.
doi:10.1109/60.766982

20. Aydin, M., S. Huang, and T. A. Lipo, "Design and 3D electromagnetic field analysis of non-slotted and slotted TORUS type axial flux surface mounted permanent magnet disc machines," IEEE International Electric Machines and Drives Conference, January 17th-20th, 2001.

21. Aydin, M., S. Huang, and T. A. Lipo, "Optimum design and 3D finite element analysis of nonslotted and slotted internal rotor type axial flux pm disc machines," IEEE Power Engineering Society Summer Meeting, July 15th-19th, 2001.

22. Mahmoudi, A., N. A. Rahim, and H. W. Ping, "Genetic algorithm and finite element analysis for optimum design of slotted Torus axial-flux permanent-magnet brushless DC motor," Progress In Electromagnetics Research B, Vol. 33, 383-407, 2011.
doi:10.2528/PIERB11070204

23. Liu, C. T. and S. C. Lee, "Magnetic field modeling and optimal operational control of a single-side axial-flux permanent magnet motor with center poles," Journal of Magnetism and Magnetic Materials, Vol. 304, No. 1, 454-456, September 2006.
doi:10.1016/j.jmmm.2006.02.065

24. Liu, C. T., S. C. Lin, and T. S. Chiang, "On the analytical flux distribution modeling of an axial-flux surface-mounted permanent magnet motor for control applications," Journal of Magnetism and Magnetic Materials, Vol. 282, 346-350, November 2004.

25. Vaseghi, B., N. Takorabet, and F. Meibody-Tabar, "Transient finite element analysis of induction machines with stator winding turn fault ," Progress In Electromagnetics Research, Vol. 95, 1-18, 2009.
doi:10.2528/PIER09052004

26. Torkaman, H. and E. Afjei, "FEM analysis of angular misalignment fault in SRM magnetostatic characteristics," Progress In Electromagnetics Research, Vol. 104, 31-48, 2010.
doi:10.2528/PIER10041406

27. Torkaman, H. and E. Afjei, "Comparison of two types of dual layer generator in field assisted mode utilizing 3D-FEM and experimental verification," Progress In Electromagnetics Research B, Vol. 23, 293-309, 2010.
doi:10.2528/PIERB10060808

28. Torkaman, H. and E. Afjei, "Magnetio static field analysis regarding the effects of dynamic eccentricity in switched reluctance motor," Progress In Electromagnetics Research M, Vol. 8, 163-180, 2009.
doi:10.2528/PIERM09060205

29. Opera Version 14.0 User Guide, Vector Fields, 2011, http://www.cobham.com.

30. Wang, R. J., M. J. Kamper, and K. V. D. Westhuizen, "Optimal design of a coreless stator axial flux permanent magnet generator," IEEE Transaction on Magnetics, Vol. 41, No. 1, 55-64, January 2005.
doi:10.1109/TMAG.2004.840183

31. Saari, J., Thermal analysis of high-speed induction machines, Ph.D. Dissertation, Helsinki Univ. Technology, Helsinki, Finland, January 1998.

32. Hanselman, D. C., Brushless Permanent Magnet Motor Design, McGraw-Hill, New York, 1994.