Vol. 123

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2012-01-06

A Novel Estimation Approach of Dynamic and Coupling Baseline for Distributed Satellite SAR

By Liang Feng, Huaping Xu, Chun-Sheng Li, Shuang Li, and Han Gao
Progress In Electromagnetics Research, Vol. 123, 467-484, 2012
doi:10.2528/PIER11083105

Abstract

In distributed satellite synthetic aperture radar (DS-SAR), along-track and cross-track baselines couple with each other and change dynamically due to formation flying, which makes it difficult to estimate interferometric baseline accurately. To solve the problem, a novel high-precision baseline estimation approach based on interferometric phase is proposed. By modeling accurate relationship between coupling baselines and two-dimensional (azimuth and range) inteferometric fringe frequency under the ellipsoid earth model, the along-track and cross-track baseline can be estimated separately by interferometric phase decoupling. By selecting several segments from interferometric phase during the whole data-take time and estimating instantaneous baseline of each segment, the dynamic baseline can be obtained via a linear filtering. Besides, to improve the baseline estimation accuracy, Semi-Newton iterative method is applied to acquire high-precision fringe frequency estimation, which can make the baseline estimation achieve centimeter level precision. The simulation validates the approach.

Citation


Liang Feng, Huaping Xu, Chun-Sheng Li, Shuang Li, and Han Gao, "A Novel Estimation Approach of Dynamic and Coupling Baseline for Distributed Satellite SAR," Progress In Electromagnetics Research, Vol. 123, 467-484, 2012.
doi:10.2528/PIER11083105
http://jpier.org/PIER/pier.php?paper=11083105

References


    1. Zhou, Y. Q., H. P. Xu, and J. Chen, "Research progress of distributed small satellites synthetic aperture radar," ACTA Electronic SINICA, Vol. 31, No. 12, 1939-1944, 2003.

    2. Massonnet, D., "Capabilities and limitations of the interferometric cartwheel," IEEE Trans. Geosci. Remote Sens., Vol. 39, No. 3, 506-520, 2001.
    doi:10.1109/36.911109

    3. Wu, B. I., M. C. Yeung, Y. Hara, and J. A. Kong, "InSAR height inversion by using 3-D phase projection with multiple baselines," Progress In Electromagnetics Research, Vol. 91, 173-193, 2009.
    doi:10.2528/PIER09020902

    4. Li, S., H. P. Xu, and L. Q. Zhang, "An advanced Dss-SAR InSAR terrain height estimation approach based on baseline decoupling," Progress In Electromagnetics Research, Vol. 119, 207-224, 2011.
    doi:10.2528/PIER11042301

    5. Liu, D., Y. Du, G. Sun, W.-Z. Yan, and B.-I. Wu, "Analysis of InSAR sensitivity to forest structure based on radar scattering model," Progress In Electromagnetics Research, Vol. 84, 149-171, 2008.
    doi:10.2528/PIER08071802

    6. Ren, K., V. Prinet, and X. Q. Shi, "Comparison of satellite baseline estimation methods for interferometry applications," IGARSS'03, Vol. 6, 3821-3823, 2003.

    7. Kimura, H. and M. Todo, "Baseline estimation using ground points for interferometric SAR," IGARSS'97, Vol. 1, 442-444, 1997.

    8. Zhang, X. L., S. J. Huang, and J. G. Wang, "Approaches to estimating terrain height and baseline for interferometric SAR," Electronics Letters, Vol. 34, No. 25, 2428-2429, 1998.
    doi:10.1049/el:19981475

    9. Chen, J., S. Quegan, and X. Yin, "Calibration of spaceborne linearly polarized low frequency SAR using polarimetric selective radar calibrators," Progress In Electromagnetics Research, Vol. 114, 89-111, 2011.

    10. Wei, H. J., J. B. Zhu, and D. N. Liang, "An accurate baseline estimate method for rugged terrain utilize rough DEM," Journal of National University of Defence Technology, Vol. 32, No. 1, 74-78, 2010.

    11. Lin, J. T., J. Hong, and J. W. Hu, "Calibration for spaceborne InSAR baseline vector based on sea surface," Foreign Electronic Measurement Technology, Vol. 29, No. 3, 31-34, 2010.

    12. Singh, K., et al., "Baseline estimation in interferometric SAR," IGARSS'97, Vol. 1, 454-456, 1997.

    13. Tang, X. Q., M. S. Xiang, and Y. R. Wu, "An improved baseline estimation approach based on the interferometric phases," Journal of Electronics & Information Technology, Vol. 30, No. 12, 2795-2799, 2008.
    doi:10.3724/SP.J.1146.2007.01974

    14. Atwood, D. K., et al., "DEM control in Arctic Alaska with ICESat laser altimetry," IEEE Trans. Geosci. Remote Sens., Vol. 45, No. 11, 3710-3720, 2007.
    doi:10.1109/TGRS.2007.904335

    15. Brown, Jr., C. G., K. Sarabandi, and L. E. Pierce, "Validation of the Shuttle Radar Topography Mission height data," IEEE Trans. Geosci. Remote Sens., Vol. 43, No. 8, 1707-1715, 2005.
    doi:10.1109/TGRS.2005.851789

    16. Ma, L., Z. F. Li, and G. Liao, "System error analysis and calibration methods for multi-channel SAR," Progress In Electromagnetics Research, Vol. 112, 309-327, 2011.

    17. Dang, Y. W. and W. D. Yu, "Analysis of the along-track baseline decorrelation of distributed small satellites SAR," Journal of Electronics & Information Technology, Vol. 29, No. 12, 2863-2866, 2007.

    18. Krieger, G., et al., "TanDEM-X: A satellite formation for high-resolution SAR interferometry," IEEE Trans. Geosci. Remote Sens., Vol. 45, No. 11, 3317-3341, 2007.
    doi:10.1109/TGRS.2007.900693

    19. Krieger, G., et al., "Interferometric synthetic aperture radar (SAR) missions employing formation flying," Proceedings of the IEEE, Vol. 98, No. 5, 816-843, 2010.
    doi:10.1109/JPROC.2009.2038948

    20. Xu, Q., G. S. Liao, and Y. Liu, "3-D baseline error estimation method for distributed small satellites," Journal of Xidian University, Vol. 25, No. 4, 668-672, 2008.

    21. Liu, Y., Z. M. Wang, and D. Y. Yi, "Associated modeling and error analysis between space states and alimeter baseline of distributed SAR," Journal of System Simulation, Vol. 19, No. 15, 3468-3472, 2007.

    22. Cumming, I. G. and J. R. Bennett, "Digital processing of SEASAT SAR data," IEEE International Conference on Acoustics, Speech & Signal Processing, Vol. 4, 710-718, 1979.

    23. Huang, Y., Research on Image Formation Technology for High Resolution SAR, Beihang University, Beijing, 1999.

    24. Sun, J., S. Mao, G. Wang, and W. Hong, "Polar format algorithm for spotlight bistatic SAR with arbitrary geometry configuration," Progress In Electromagnetics Research, Vol. 103, 323-338, 2010.
    doi:10.2528/PIER10030703

    25. Xu, H. P., Y. Q. Zhou, and C. S. Li, "Signal model of single look complex image for distributed small satellite synthetic aperture radar," Journal of Electronics & Information Technology, Vol. 26, 168-172, 2004.

    26. Guo, D., H. Xu, and J. Li, "Extended wavenumber domain algorithm for highly squinted sliding spotlight SAR data processing," Progress In Electromagnetics Research, Vol. 114, 17-32, 2011.

    27. Xu, W., P. Huang, and Y.-K. Deng, "Multi-channel Spcmb-Tops SAR for high-resolution wide-swath imaging," Progress In Electromagnetics Research, Vol. 116, 533-551, 2011.

    28. Liu, Q., W. Hong, W. Tan, Y. Lin, Y. Wang, and Y. Wu, "An improved polar format algorithm with performance analysis for geosynchronous circular SAR 2D imaging," Progress In Electromagnetics Research, Vol. 119, 155-170, 2011.
    doi:10.2528/PIER11060503

    29. Sansosti, E., et al., "Geometrical SAR image registration," IEEE Trans. Geosci. Remote Sens., Vol. 44, No. 10, 2861-2870, 2006.
    doi:10.1109/TGRS.2006.875787

    30. Nitti, D. O., et al., "Impact of DEM-assisted coregistration on high-resolution SAR interferometry," IEEE Trans. Geosci. Remote Sens., Vol. 49, No. 3, 1127-1143, 2011.
    doi:10.1109/TGRS.2010.2074204

    31. Li, C. and D. Y. Zhu, "A residue-pairing algorithm for InSAR phase unwrapping," Progress In Electromagnetics Research, Vol. 95, 341-354, 2009.
    doi:10.2528/PIER09070706

    32. Abatzoglou, T. J., "A fast maximum likelihood algorithm for frequency estimation of a sinusoid based on Newton's method," IEEE Trans. on Acoustics, Speech and Signal Processing, Vol. 33, No. 1, 77-89, 1985.
    doi:10.1109/TASSP.1985.1164541

    33. Xu, H. P., J. Chen, B. F. Wang, and Y. Q. Zhou, "Quick method of distributed small satellite synthetic aperture radar single-look complex image simulation," Journal of Beijing University of Aeronautics and Astronautics, Vol. 32, No. 4, 445-449, 2006.

    34. Chang, Y.-L., C.-Y. Chiang, and K.-S. Chen, "SAR image simulation with application to target recognition," Progress In Electromagnetics Research, Vol. 119, 35-57, 2011.
    doi:10.2528/PIER11061507

    35. Zhang, M., Y. W. Zhao, H. Chen, and W.-Q. Jiang, "SAR imaging simulation for composite model of ship on dynamic ocean scene," Progress In Electromagnetics Research, Vol. 113, 395-412, 2011.
    doi:10.2528/PIER11071501