Vol. 120
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-09-06
Efficient Time-Domain Analysis of Waveguide Discontinuities Using Higher Order FEM in Frequency Domain
By
Progress In Electromagnetics Research, Vol. 120, 215-234, 2011
Abstract
A computational technique is presented for efficient and accurate time-domain analysis of multiport waveguide structures with arbitrary metallic and dielectric discontinuities using a higher order finite element method (FEM) in the frequency domain. It is demonstrated that with a highly efficient and appropriately designed frequency-domain FEM solver, it is possible to obtain extremely fast and accurate time-domain solutions of microwave passive structures performing computations in the frequency domain along with the discrete Fourier transform (DFT) and its inverse (IDFT). The technique is a higher order large domain Galerkin-type FEM for 3-D analysis of waveguide structures with discontinuities implementing curl-conforming hierarchical polynomial vector basis functions in conjunction with Lagrange-type curved hexahedral finite elements and a simple single-mode boundary condition, coupled with standard DFT and IDFT algorithms. The examples demonstrate excellent numerical properties of the technique, which appears to be the first time-from-frequency-domain FEM solver, primarily due to (i) very small total numbers of unknowns in higher order solutions, (ii) great modeling flexibility using large (homogeneous and continuously inhomogeneous) finite elements, and (iii) extremely fast multifrequency FEM analysis (the global FEM matrix is filled only once and then reused for every subsequent frequency point) needed for the inverse Fourier transform.
Citation
Eve M. Klopf, Sanja B. Manić, Milan M. Ilic, and Branislav M. Notaroš, "Efficient Time-Domain Analysis of Waveguide Discontinuities Using Higher Order FEM in Frequency Domain," Progress In Electromagnetics Research, Vol. 120, 215-234, 2011.
doi:10.2528/PIER11080814
References

1. Rubio, J., J. Arroyo, and J. Zapata, "Analysis of passive microwave circuits by using a hybrid 2-D and 3-D finite-element mode-matching method," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 9, 1746-1749, September 1999.
doi:10.1109/22.788618

2. Ilić, M. M., A. Ž. Ilić, and B. M. Notaroš, "Higher order large-domain FEM modeling of 3-D multiport waveguide structures with arbitrary discontinuities," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 6, 1608-1614, June 2004.
doi:10.1109/TMTT.2004.828457

3. El Sabbagh, M. and K. Zaki, "Modeling of rectangular waveguide junctions containing cylindrical posts," Progress In Electromagnetics Research, Vol. 33, 299-331, 2001.
doi:10.2528/PIER01022603

4. Booty, M. R. and G. A. Kriegsmann, "Reflection and transmission from a thin inhomogeneous cylinder in a rectangular TE10 waveguide," Progress In Electromagnetics Research, Vol. 47, 263-296, 2004.
doi:10.2528/PIER03122304

5. Khalaj-Amirhosseini, M., "Microwave filters using waveguides filled by multi-layer dielectric," Progress In Electromagnetics Research, Vol. 66, 105-110, 2006.
doi:10.2528/PIER06102502

6. Sjöberg, D., "Determination of propagation constants and material data from waveguide measurements," Progress In Electromagnetics Research B, Vol. 12, 163-182, 2009.
doi:10.2528/PIERB08121304

7. Jin, J. M., The Finite Element Method in Electromagnetics, 2nd Ed., John Wiley & Sons, New York, 2002.

8. Jin, J. M. and D. J. Riley, Finite Element Analysis of Antennas and Arrays, John Wiley & Sons, New York, 2008.
doi:10.1002/9780470409732

9. Notaroš, B. M., "Higher order frequency-domain computational lectromagnetics," Special Issue on Large and Multiscale Computational Electromagnetics, IEEE Transactions on Antennas and Propagation, Vol. 56, No. 8, 2251-2276, August 2008.

10. Rui, X., J. Hu, and Q. H. Liu, "Higher order finite element method for inhomogeneous axisymmetric resonators," Progress In Electromagnetics Research B, Vol. 21, 189-201, 2010.

11. Kristensson, G., "Transient electromagnetic wave propagation in waveguides," Journal of Electromagnetic Waves and Applications, Vol. 9, No. 5--6, 645-671, 1995.
doi:10.1163/156939395X00866

12. Rothwell, E. J., A. K. Temme, and B. R. Crowgey, "Pulse reflection from a dielectric discontinuity in a rectangular waveguide," Progress In Electromagnetics Research, Vol. 97, 11-25, 2009.
doi:10.2528/PIER09090905

13. Tsai, H. P., Y.Wang, and T. Itoh, "Efficient analysis of microwave passive structures using 3-D envelope-finite element (EVFE)," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 12, 2721-2727, December 2002.
doi:10.1109/TMTT.2002.805190

14. Faghihi, F. and H. Heydari, "A combination of time domain finite element-boundary integral with time domain physical optics for calculation of electromagnetic scattering of 3-D structures," Progress In Electromagnetics Research, Vol. 79, 463-474, 2008.
doi:10.2528/PIER07110206

15. Ilić, M. M., A. Ž. Ilić, and B. M. Notaroš, "Continuously inhomogeneous higher order finite elements for 3-D electromagnetic analysis," IEEE Transactions on Antennas and Propagations, Vol. 57, No. 9, 2798-2803, September 2009.
doi:10.1109/TAP.2009.2027350

16. De la Rubia, V., U. Razafison, and Y. Maday, "Reliable fast frequency sweep for microwave devices via the reduced-basis method," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 12, 2923-2937, December 2009.
doi:10.1109/TMTT.2009.2034208

17. Olćan, D. I., M. M. Nikolić, B. M. Kolundžija, and A. R. Djordjević, "Time-domain response of 3-D structures calculated using WIPL-D," Proceedings of the 2007 Annual Review of Progress in Applied Computational Electromagnetics, 525-531, Verona, Italy, March 2007.

18. Ilić, M. M. and B. M. Notaroš, "Higher order hierarchical curved hexahedral vector finite elements for electromagnetic modeling," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 3, 1026-1033, March 2003.
doi:10.1109/TMTT.2003.808680

19. Djordjević, M. and B. M. Notaroš, "Double higher order method of moments for surface integral equation modeling of metallic and dielectric antennas and scatterers," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 8, 2118-2129, August 2004.
doi:10.1109/TAP.2004.833175

20. Kolundžija, B., B. Janić, and M. Rakić, "Novel technique for deembeding S-parameters in electromagnetic modeling of arbitrary circuits," IEEE APS International Symposium Digest, 2784-2787, Monterey, CA, USA, June 2004.

21. Bunger, R. and F. Arndt, "Moment-method analysis of arbitrary 3-D metallic N-port waveguide structures," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, No. 4, 531-537, April 2000.
doi:10.1109/22.842024