Vol. 119

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2011-08-05

Investigation of Low-Grazing-Angle Microwave Backscattering from Threedimensional Breaking Sea Waves

By Wei Luo, Min Zhang, Chao Wang, and Hong-Cheng Yin
Progress In Electromagnetics Research, Vol. 119, 279-298, 2011
doi:10.2528/PIER11062607

Abstract

The microwave backscattering of the sea surface is investigated with the wedge-shaped breaking waves for the super events at low grazing angles (LGA). According to the relationship between the wave breaking and the whitecap, the finite three-dimensional wedges are utilized to approximately model the breaking waves, of which the spatial distribution is simulated with whitecap coverage. The phase-modified two-scale method (TSM) and method of equivalent currents (MEC) are used to calculate the surface and volume scattering of sea surface and breaking waves respectively. The sea spikes in LGA are observed by this model, and the strong directionality is caused by the breakers. Considering the Bragg phase velocity, orbital motion of facets and wind drift, the Doppler spectrum is simulated with the time series of sea clutter. Included the breaking waves, the scattering model indicates that the enhanced non-Bragg scattering leads to the extended Doppler spectrum width. The numerical results agree with the measured data well at LGA. Compared with the statistical models, the complex physical mechanism of the sea scattering is explicitly described in this paper.

Citation


Wei Luo, Min Zhang, Chao Wang, and Hong-Cheng Yin, "Investigation of Low-Grazing-Angle Microwave Backscattering from Threedimensional Breaking Sea Waves," Progress In Electromagnetics Research, Vol. 119, 279-298, 2011.
doi:10.2528/PIER11062607
http://jpier.org/PIER/pier.php?paper=11062607

References


    1. Zhang, M., Y. W. Zhao, H. Chen, and W.-Q. Jiang, "SAR imaging simulation for composite model of ship on dynamic ocean scene," Progress In Electromagnetics Research, Vol. 113, 395-412, 2011.
    doi:10.2528/PIER11071501

    2. Luo, W., M. Zhang, Y. W. Zhao, and H. Chen, "An efficient hybrid high-frequency solution for the composite scattering of the ship on very large two-dimensional sea surface," Progress In Electromagnetics Research M, Vol. 8, 79-89, 2009.
    doi:10.2528/PIERM09050103

    3. Zhao, Y. W., M. Zhang, and H. Chen, "An efficient ocean SAR raw signal simulation by employing fast Fourier transform," Journal of Electromagnetic Waves and Application, Vol. 24, No. 16, 2273-2284, 2010.
    doi:10.1163/156939310793699064

    4. Liang, D., P. Xu, L. Tsang, Z. Gui, and K.-S. Chen, "Electromagnetic scattering by rough surfaces with large heights and slopes with applications to microwave remote sensing of rough surface over layered media," Progress In Electromagnetics Research, Vol. 95, 199-218, 2009.
    doi:10.2528/PIER09071413

    5. Chen, K.-S., L. Tsang, and J.-C. Shi, "Microwave emission from two-dimensional inhomogeneous dielectric rough surfaces based on physics-based two-grid method ," Progress In Electromagnetics Research, Vol. 67, 181-203, 2007.
    doi:10.2528/PIER06082903

    6. Mittal, G. and D. Singh, "Critical analysis of microwave specular scattering response on roughness parameter and moisture content for bare periodic rough surfaces and its retrieval," Progress In Electromagnetics Research, Vol. 100, 129-152, 2010.
    doi:10.2528/PIER09091705

    7. Brelet, Y. and C. Bourlier, "SPM numerical results from an effective surface impedance for a one-dimensional perfectly-conducting rough sea surface," Progress In Electromagnetics Research, Vol. 81, 413-436, 2008.
    doi:10.2528/PIER07121703

    8. Ishimaru, A., C. Le, Y. Kuga, L. A. Sengers, T. K. Chan, and , "Polarimetric scattering theory for high slope rough surface," Progress In Electromagnetics Research, Vol. 14, 1-36, 1996.

    9. Fabbro, V., C. Bourlier, and P. F. Combes, "Forward propagation modeling above Gaussian rough surfaces by the parabolic shadowing effect ," Progress In Electromagnetics Research, Vol. 58, 243-269, 2006.
    doi:10.2528/PIER05090101

    10. Xu, P., K.-S. Chen, and L. Tsang, "Analysis of microwave emission of exponentially correlated rough soil surfaces from 1.4 GHz to 36.5 GHz," Progress In Electromagnetics Research, Vol. 108, 205-219, 2010.
    doi:10.2528/PIER10072703

    11. Chen, H., M. Zhang, D. Nie, and H.-C. Yin, "Robust semi-deterministic facet model for fast estimation on EM scattering from ocean-like surface," Progress In Electromagnetics Research B, Vol. 18, 347-363, 2009.
    doi:10.2528/PIERB09100508

    12. Oraizi, H. and S. Hosseinzadeh, "A novel marching algorithm for radio wave propagation modeling over rough surfaces," Progress In Electromagnetics Research, Vol. 57, 85-100, 2006.
    doi:10.2528/PIER05051001

    13. Chang, Y.-L., C.-Y. Chiang, and K.-S. Chen, "SAR image simulation with application to target recognition," Progress In Electromagnetics Research, Vol. 119, 35-57, 2011.
    doi:10.2528/PIER11061507

    14. Lewis, B. L. and I. D. Olin, "Experimental study and theoretical model of high-resolution radar backscatter from the sea," Radio Sci., Vol. 15, 815-828, 1980.
    doi:10.1029/RS015i004p00815

    15. Fuchs, J., D. Regas, T. Waseda, S. Welch, and M. P. Tulin, "Correlation of hydrodynamic features with LGA radar backscatter from breaking waves," IEEE Trans. Geosci. Remote Sens., Vol. 37, No. 5, 2442-2460, 1999.
    doi:10.1109/36.789641

    16. Lee, P. H. Y., et al., "X band microwave backscattering from ocean waves," J. Geophys. Res., Vol. 100, No. 2, 2591-2611, 1995.
    doi:10.1029/94JC02741

    17. Jessup, A. T., W. K. Melville, and W. C. Keller, "Breaking waves a®ecting microwave backscatter 1. detection and verification," J. Geophys. Res., Vol. 96, No. C11, 20547-20559.
    doi:10.1029/91JC01993

    18. Lee, P. H. Y, et al., "Wind-speed dependence of small-grazing-angle microwave backscatter from sea surfaces," IEEE Trans. Antennas Propagat., Vol. 44, No. 3, 333-340, 1996.
    doi:10.1109/8.486302

    19. Walker, D., "Doppler modelling of radar sea clutter," IEE Proceedings --- Radar, Sonar and Navigation, Vol. 148, No. 2, 73-80, 2001.
    doi:10.1049/ip-rsn:20010182

    20. West, J. C. and Z. Q. Zhao, "Electromagnetic modeling of multipath scattering from breaking water waves with rough faces," IEEE Trans. Geosci. Remote Sens., Vol. 40, No. 3, 583-592, 2002.
    doi:10.1109/TGRS.2002.1000318

    21. West, J. C., "Low-grazing-angle (LGA) sea-spike backscattering from plunging breaker crests," IEEE Trans. Geosci. Remote Sens., Vol. 40, No. 2, 523-526, 2002.
    doi:10.1109/36.992830

    22. Zhao, Z. Q. and J. C. West, "Low-grazing-angle microwave scattering from a three-dimensional spilling breaker crest: A numerical investigation," IEEE Trans. Geosci. Remote Sens., Vol. 43, No. 2, 286-294, 2005.
    doi:10.1109/TGRS.2004.840644

    23. Kudryavtsev, V., D. Hauser, G. Caudal, and B. Chapron, "A semiempirical model of the normalized radar cross-section of the sea surface 1.Background model," J. Geophys. Res., Vol. 108, No. C3, 8054, 2003.
    doi:10.1029/2001JC001003

    24. Kalmykov, A. I. and V. V. Pustovoytenko, "On polarization features of radio signals scattered from the sea surface at small grazing angles," J. Geophys. Res., Vol. 81, No. 12, 1960-1964, 1976.
    doi:10.1029/JC081i012p01960

    25. Kwoh, D. S. W. and B. M. Lake, "A deterministic, coherent and dual-polarized laboratory study of microwave backscattering from water waves, part I: Short gravity waves without wind," IEEE Journal of Oceanic Engineering, Vol. 9, No. 5, 291-308, 1984.
    doi:10.1109/JOE.1984.1145638

    26. Lyzenga, D. R., A. L. Maffett, and R. A. Shuchman, "The contribution of wedge scattering to the radar cross section of the ocean surface," IEEE Trans. Geosci. Remote Sens., Vol. GE-21, No. 4, 502-505, 1983.
    doi:10.1109/TGRS.1983.350513

    27. Ericson, E. A. and D. R. Lyzenga, "Performance of a numerical iterative solution of the surface current integral equation for surfaces containing small radii of curvature," Radio Sci., Vol. 33, No. 2, 205-217, 1998.
    doi:10.1029/97RS03783

    28. Lyzenga, D. R. and E. A. Ericson, "Numerical calculations of radar scattering from sharply peaked ocean waves," IEEE Trans. Geosci. Remote Sens., Vol. 36, No. 2, 636-646, 1998.
    doi:10.1109/36.662744

    29. Hasselmann, D. E., "Directional wave spectra observed during JONSWAP 1973," J. Phys. Oceanogr., Vol. 10, No. 7, 1264-1280, 1980.
    doi:10.1175/1520-0485(1980)010<1264:DWSODJ>2.0.CO;2

    30. Lee, P. H. Y., et al., "Scattering from breaking gravity waves without wind," IEEE Trans. Antennas Propagat., Vol. 46, No. 1, 14-26, 1998.
    doi:10.1109/8.655447

    31. Wang, P., Y. Yao, and M. P. Tulin, "An efficient numerical tank for nonlinear water waves, based on the multi-subdomain approach with BEM ," Int. J. Numer. Meth. Fluids, Vol. 20, 1315-1336, 1995.
    doi:10.1002/fld.1650201203

    32. Xu, D., X. Liu, and D. Yu, "Probability of wave breaking and whitecap coverage in a fetch-limited sea," J. Geophys. Res., Vol. 105, No. C6, 14253-14259, 2000.
    doi:10.1029/2000JC900040

    33. Monahan, E. C. and I. Ó Muircheartaigh, "Optimal power-law description of oceanic whitecap coverage dependence on wind speed," J. Phys. Oceanogr., Vol. 10, No. 12, 2094-2099, 1980.
    doi:10.1175/1520-0485(1980)010<2094:OPLDOO>2.0.CO;2

    34. Fung, A. K. and K. K. Lee, "A semi-empirical sea-spectrum model for scattering coefficient estimation," IEEE Journal of Oceanic Engineering, Vol. 7, 166-176, 1982.
    doi:10.1109/JOE.1982.1145535

    35. Yang, W., Z. Zhao, C. Qi, W. Liu, and Z.-P. Nie, "Iterative hybrid method for electromagnetic scattering from a 3-D object above a 2-D random dielectric rough surface," Progress In Electromagnetics Research, Vol. 117, 435-448, 2011.

    36. Bausssard, A., M. Rochdi, and A. Khenchaf, "PO/MEC-based scattering model for complex objects on a sea surface," Progress In Electromagnetics Research, Vol. 111, 229-251, 2011.
    doi:10.2528/PIER10083005

    37. Ando, M., T. Murasaki, and T. Kinoshita, "Elimination of false singularities in GTD equivalent edge currents," IEE Proceedings H Microwaves, Antennas and Propagation, Vol. 138, 289-296, 1991.
    doi:10.1049/ip-h-2.1991.0049

    38. Walker, D., "Experimentally motivated model for low grazing angle radar doppler spectra of the sea surface," IEE Proceedings --- Radar, Sonar and Navigation, Vol. 147, 114-120, 2000.
    doi:10.1049/ip-rsn:20000386

    39. Toporkov, J. V. and G. S. Brown, "Numerical simulations of scattering from time-varying, randomly rough surfaces," IEEE Trans. Geosci. Remote Sens., Vol. 38, No. 4, 1616-1625, 2000.
    doi:10.1109/36.851961

    40. Plant, W. J., "Microwave sea return at moderate to high incidence angles," Waves in Random and Complex Media, Vol. 13, No. 4, 339-354, 2003.

    41. Hwang, P. A., M. A. Sletten, and J. V. Toporkov, "Breaking wave contribution to low grazing angle radar backscatter from the ocean surface," J. Geophys. Res., Vol. 113, No. C09017, 1-12, 2008.

    42. Smith, T. L., T. Waseda, and C.-K. Rheem, "Measurements of the doppler spectra of breaking waves," IET Radar Sonar Navig., Vol. 1, No. 2, 149-157, 2007.
    doi:10.1049/iet-rsn:20060109