Vol. 119

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2011-08-18

Terahertz Metamaterial Modulators Based on Absorption

By Hao Zhou, Fei Ding, Yi Jin, and Sailing He
Progress In Electromagnetics Research, Vol. 119, 449-460, 2011
doi:10.2528/PIER11061304

Abstract

Metamaterial absorbers can perfectly absorb an incident wave in a narrow frequency band. In this paper, metamaterial absorbers are used to construct a terahertz modulator. By controlling the carrier density in the n-doped semiconductor spacer between a patterned metallic superstructure and a metallic ground with different applied voltage bias, the absorption varies sensitively, and the reflected wave amplitude acting as the modulated signal can be strongly modulated. Two types of modulators are investigated, one of which possesses an array of metallic crosses as the superstructure, and the other has a complementary superstructure. Compared with the former, the latter may give a better modulation performance.

Citation


Hao Zhou, Fei Ding, Yi Jin, and Sailing He, "Terahertz Metamaterial Modulators Based on Absorption," Progress In Electromagnetics Research, Vol. 119, 449-460, 2011.
doi:10.2528/PIER11061304
http://jpier.org/PIER/pier.php?paper=11061304

References


    1. Pendry, J. B., A. T. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, No. 25, 4773-4776, 1996.
    doi:10.1103/PhysRevLett.76.4773

    2. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors, and enhanced non-linear phenomena," IEEE Trans. Microw. Theory Tech., Vol. 47, 2075-2084, 1999.
    doi:10.1109/22.798002

    3. Pendry, J. B., "A chiral route to negative refraction," Science, Vol. 306, 1353-1355, 2004.
    doi:10.1126/science.1104467

    4. Wu, Z., B. Q. Zeng, and S. Zhong, "A double-layer chiral metamaterial with negative index," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 7, 983-992, 2010.
    doi:10.1163/156939310791285173

    5. Enoch, S., G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, "A metamaterial for directive emission," Phys. Rev. Lett., Vol. 89, No. 21, 213902, 2002.
    doi:10.1103/PhysRevLett.89.213902

    6. Huang, X. Q., Y. Lai, Z. H. Hang, H. H. Zheng, and C. T. Chan, "Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials," Nature Materials, Vol. 10, 582-586, 2011.
    doi:10.1038/nmat3030

    7. Oraizi, H., A. Abdolali, and N. Vaseghi, "Application of double zero metamaterials as radar absorbing materials for the reduction of radar cross section ," Progress In Electromagnetics Research, Vol. 101, 323-337, 2010.
    doi:10.2528/PIER10010603

    8. Zhou, H., S. Qu, Z. Pei, Y. Yang, J. Zhang, J. Wang, H. Ma, C. Gu, X.-H. Wang, and Z. Xu, "A high-directive patch antenna based on all-dielectric near-zero-index metamaterial superstrates," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 10, 1387-1396, 2010.
    doi:10.1163/156939310791958680

    9. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966-3969, 2000.
    doi:10.1103/PhysRevLett.85.3966

    10. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780-1782, 2006.
    doi:10.1126/science.1125907

    11. Chen, H. Y., C. T. Chan, and P. Sheng, "Transformation optics and metamaterials," Nature Materials, Vol. 9, 387-396, 2010.
    doi:10.1038/nmat2743

    12. Yu, G.-X., T.-J. Cui, W. Xiang, J. Xin, M. Yang, Q. Cheng, and Y. Hao, "Transformation of different kinds of electromagnetic waves using metamaterials ," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5-6, 583-592, 2009.
    doi:10.1163/156939309788019723

    13. Mei, Z. L., J. Bai, and T. J. Cui, "Illusion devices with quasi-conformal mapping," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17-18, 2561-2573, 2010.
    doi:10.1163/156939310793675664

    14. O'Hara, J. F., et al., "Thin-film sensing with planar terahertz metamaterials: Sensitivity and limitations," Opt. Express, Vol. 16, No. 3, 1786-1795, 2008.
    doi:10.1364/OE.16.001786

    15. Singh, R., C. Rockstuhl, C. Menzel, T. P. Meyrath, M. He, H. Giessen, F. Lederer, and W. Zhang, "Spiral-type terahertz antennas and the manifestation of the Mushiake principle," Opt. Express, Vol. 17, No. 12, 9971-9980, 2009.
    doi:10.1364/OE.17.009971

    16. Singh, R., et al., "Terahertz metamaterial with asymmetric transmission," Physical Review B, Vol. 80, No. 15, 153104, 2009.
    doi:10.1103/PhysRevB.80.153104

    17. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "A perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402, 2008.
    doi:10.1103/PhysRevLett.100.207402

    18. Landy, N. I., C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Paddila, "Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging," Phys. Rev. B, Vol. 79, 125104, 2009.
    doi:10.1103/PhysRevB.79.125104

    19. Wang, J., S. Qu, Z. Fu, H. Ma, Y. Yang, X. Wu, Z. Xu, and M. Hao, "Three-dimensional metamaterial microwave absorbers composed of coplanar magnetic and electric resonators," Progress In Electromagnetics Research Letters, Vol. 7, 15-24, 2009.
    doi:10.2528/PIERL09012003

    20. Tao, H., et al., "A dual band terahertz metamaterial absorber," J. Phys. D: Appl. Phys., Vol. 43, 225102, 2010.
    doi:10.1088/0022-3727/43/22/225102

    21. Zhu, B., Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, "Polarization insensitive metamaterial absorber with wide incident angle ," Progress In Electromagnetics Research, Vol. 101, 231-239, 2010.
    doi:10.2528/PIER10011110

    22. Gu, C., S. Qu, Z. Pei, H. Zhou, J. Wang, B.-Q. Lin, Z. Xu, P. Bai, and W.-D. Peng, "A wide-band, polarization-insensitive and wide-angle terahertz metamaterial absorber," Progress In Electromagnetics Research Letters, Vol. 17, 171-179, 2010.
    doi:10.2528/PIERL10070105

    23. Huang, L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research, Vol. 113, 103-110, 2011.

    24. Ye, Y. Q., Y. Jin, and S. L. He, "Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime," J. Opt. Soc. Am. B, Vol. 27, 498-504, 2010.
    doi:10.1364/JOSAB.27.000498

    25. Chen, H. T., W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature, Vol. 444, 567-600, 2006.

    26. Padilla, W. J., et al., "Dynamical electric and magnetic metamaterial response at terahertz frequencies," Physical Review Letters, Vol. 96, No. 10, 107401, 2006.
    doi:10.1103/PhysRevLett.96.107401

    27. Chen, H. T., et al., "Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices," Opt. Lett., Vol. 32, 1620-1622, 2007.
    doi:10.1364/OL.32.001620

    28. Chen, H. T., et al., "Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves," Appl. Phys. Lett., Vol. 93, 091117, 2008.
    doi:10.1063/1.2978071

    29. Chen, H. T., et al., "Experimental demonstration of frequency-agile terahertz metamaterials," Nature Photon., Vol. 2, 295-298, 2008.
    doi:10.1038/nphoton.2008.52

    30. Chen, H. T., et al., "A metamaterial solid-state terahertz phase modulator," Nature Photon., Vol. 3, 148-151, 2009.
    doi:10.1038/nphoton.2009.3

    31. Chen, H. T., et al., "Complementary planar terahertz metamaterials," Opt. Express, Vol. 15, No. 3, 1084-1095, 2007.
    doi:10.1364/OE.15.001084

    32. Liu, X. L., T. Starr, A. F. Starr, and W. J. Padilla, "Infrared spatial and frequency selective metamaterial with near-unity absorbance ," Phys. Rev. Lett., Vol. 104, 207403, 2010.
    doi:10.1103/PhysRevLett.104.207403

    33. Hao, J. M., L. Zhou, and M. Qiu, "Nearly total absorption of light and heat generation by plasmonic metamaterials," Phys. Rev. B, Vol. 83, 165107, 2011.
    doi:10.1103/PhysRevB.83.165107

    34. Liu, N., L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Plasmonic building blocks for magnetic molecules in three-dimensional optical metamaterials," Adv. Mater., Vol. 20, 3859-3865, 2008.
    doi:10.1002/adma.200702950

    35. Li, T., H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, "Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission," Opt. Express, Vol. 14, 11155-11163, 2006.
    doi:10.1364/OE.14.011155

    36. Liu, N., H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Plasmon hybridization in stacked cut-wire metamaterials," Adv. Mater., Vol. 19, 3628-3632, 2007.
    doi:10.1002/adma.200700123

    37. Paul, O., et al., "Polarization-independent active metamaterial for high-frequency terahertz modulation," Opt. Express, Vol. 17, No. 2, 819-827, 2009.
    doi:10.1364/OE.17.000819