Vol. 118
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-07-13
Attenuation in Extended Structures Coated with Thin Magneto-Dielectric Absorber Layer
By
Progress In Electromagnetics Research, Vol. 118, 441-459, 2011
Abstract
Thin absorbing layers containing magnetic alloy or ferrite inclusions can be effectively used for attenuating common-mode currents on extended structures, such as power cords, cables, or edge-coupled microstrip lines. An analytical model to evaluate attenuation on the coaxial line with the central conductor coated with a magneto-dielectric layer is proposed and validated by the experiments and numerical modeling. The analytical model is validated using available magneto-dielectric samples of different thicknesses. This model can serve for comparing and predicting the absorptive properties of different samples of magneto-dielectric materials, whose compositions may be unknown, but dielectric and magnetic properties can be determined by independent measurements over the specified frequency ranges. From modeling the absorption in a coaxial line with a wrapped central conductor, it could be concluded whether it is reasonable to use this particular material in such applications as a shield on an Ethernet or other cable, for reducing potential common-mode currents and unwanted radiation in the frequency range of interest.
Citation
Marina Koledintseva, Alexander G. Razmadze, Aleksandr Y. Gafarov, Victor V. Khilkevich, James Drewniak, and Takanori Tsutaoka, "Attenuation in Extended Structures Coated with Thin Magneto-Dielectric Absorber Layer," Progress In Electromagnetics Research, Vol. 118, 441-459, 2011.
doi:10.2528/PIER11053012
References

1. Celozzi, S., R. Araneo, and G. Lovat, Electromagnetic Shielding, Wiley, New York, 2008.

2. Neelakanta, P. S., Handbook of Electromagnetic Material: Monolithic and Composite Versions and Their Applications, CRC Press, Boca Raton, FL, 1995.

3. Koledintseva, M. Y., J. Xu, S. De, J. L. Drewniak, Y. He, and R. Johnson, "Systematic analysis and engineering of absorbing materials containing magnetic inclusions for EMC applications," IEEE Trans. Magn., Vol. 47, No. 2, 317-323, Feb. 2011.
doi:10.1109/TMAG.2010.2084991

4. Koledintseva, M., K. N. Rozanov, and J. L. Drewniak, "Engineering, modeling and testing of composite absorbing materials for EMC applications ," Advances in Composite Material --- Ecodesign and Analysis, B. Attaf (ed.), Chapter 13, 291-316, InTech, Mar. 2011.

5. Naito, Y. and K. Suetake, "Application of ferrite to electromagnetic wave absorber and its characterization," IEEE Trans. Microw. Theory Techn., Vol. 19, 65-72, Jan. 1971.
doi:10.1109/TMTT.1971.1127446

6. Shin, J. Y. and J. H. Oh, "The microwave absorbing phenomena of ferrite microwave absorbers," IEEE Trans. Magn., Vol. 29, No. 6, 3437-3439, Nov. 1993.
doi:10.1109/20.281188

7. Anantharaman, M., K. Malini, S. Sindhu, E. M. Mohammed, S. K. Date, S. D. Kulkarni, P. A. Joy, and P. Kurian, "Tailoring magnetic and dielectric properties of rubber ferrite composites containing mixed ferrites," Bulletin of Materials Science, Vol. 24, No. 6, 623-631, Dec. 2001.
doi:10.1007/BF02704011

8. Chung, Y.-C., D.-Y. Kim, and D.-C. Park, "Design of broadband electromagnetic absorber using NiZn/MnZn hybrid structure," Proc. IEEE Symp. Electromag. Compat., 409-412, Austin, TX, Aug. 1997.

9. Kazantseva, N. E., J. Vilcakova, V. Kresalek, P. Saha, I. Sapurina, and J. Stejskal, "Magnetic behavior of composites containing polyaniline-coated manganese-zinc ferrite," Journal of Magnetism and Magnetic Materials (JMMM), Vol. 269, No. 1, 30-37, Feb. 2004.
doi:10.1016/S0304-8853(03)00557-2

10. Bregar, V., "Potential application of composite with ferromagnetic nanoparticles in microwave absorber," IEEE Trans. Magn., Vol. 40, 1679-1684, 2004.
doi:10.1109/TMAG.2004.826622

11. Musal, H. and H. Hahn, "Thin-layer electromagnetic absorber design," IEEE Trans. Magn., Vol. 25, No. 5, 3851-3853, May 1989.
doi:10.1109/20.42454

12. Maslovski, S. I., P. M. T. Ikonen, I. Kolmakov, S. A. Tretyakov, and M. Kaunisto, "Artificial magnetic materials based on the new magnetic particle: Metasolenoid," Progress In Electromagnetics Research, Vol. 54, 61-81, 2005.
doi:10.2528/PIER04101101

13. Ott, H., Noise Reduction Techniques in Electronic Systems, Wiley, New York, 1988.

14. Paul, C. R., Introduction to Electromagnetic Compatibility, Wiley, New York, 1992.
doi:10.1002/0471758159

15. Vinoy, K. J. and R. M. Jha, Radar Absorbing Materials --- From Theory to Design and Characterization, Kluwer Academic Publishers, Boston, MA, 1996.

16. Koledintseva, M. Y., V. V. Bodrov, I. V. Sourkova, M. M. Sabirov, and V. I. Sourkov, "Unified spectral technique application for study of radiator behavior near planar layered composites," Progress In Electromagnetic Research, Vol. 66, 317-357, 2006.
doi:10.2528/PIER06111701

17. Nicolson, A. M. and G. Ross, "Measurement of the intrinsic properties of materials by time domain techniques," IEEE Trans. Instrum. Meas., Vol. 19, 377-382, Nov. 1970.

18. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies ," Proc. IEEE, Vol. 62, 33-36, Jan. 1974.
doi:10.1109/PROC.1974.9382

19. Baker-Jarvis, J., "Transmission/reflection and short-circuit line permittivity measurements," Technical Note 1341, Department of Commerce, NIST, US, Jul. 1990.

20. Agilent 85071E Materials Measurement Software Agilent Technologies, Technical Overview, Application Note 5988-9472EN, 2006.

21. Tosaka, T., I. Nagano, S. Yagitani, and Y. Yoshimura, "Determining the relative permeability and conductivity of thin materials ," IEEE Trans. Electromag. Compat., Vol. 47, No. 2, 352-360, May 2005.
doi:10.1109/TEMC.2005.847397

22. Chen, L. F., C. K. Ong, C. P. Neo, V. V. Varadan, and V. K. Varadan, Microwave Electronics: Measurement and Materials Characterisation, Wiley, England, 2004.

23. Sanderson, A. E., "Effect of surface roughness on propagation of the TEM mode," Advances in Microwaves, Vol. 7, 2-57, Academic Press, 1971.

24. Holloway, C. L. and E. F. Kuester, "Power loss associated with conducting and superconducting rough surfaces," IEEE Trans. Microw. Theory Tech., Vol. 48, No. 10, 1601-1610, Oct. 2000.
doi:10.1109/22.873886

25. Matsushima, A. and K. Nakata, "Power loss and local surface impedance associated with conducting rough interfaces," Electronics and Communications in Japan, Part 2, Vol. 89, No. 1, 2006, translated from Denshi Joho Gakkai Ronbunshi, Vol. J88-C, No. 7, 502-511, Jul. 2005.

26. Koledintseva, M., A. Koul, F. Zhou, J. Drewniak, and S. Hinaga, "Surface impedance approach to calculate loss in rough conductor coated with dielectric layer," IEEE Symp. Electromag. Compat., 790-795, Fort Lauderdale, FL, Jul. 2010.

27. Markov, G. T., B. M. Petrov, and G. P. Grudinskaya, Electrodynamics and Radio Wave Propagation, Chapter 6.3, ovetskoye Radio, Moscow, 1979 (in Russian).

28. Collin, R. E., Field Theory of Guided Waves, 2nd Ed., Chapter 11, IEEE, Wiley, 1991.

29. Goubau, G., "Surface waves and their application to transmission lines," J. Appl. Phys., Vol. 21, 119-1128, 1950.

30. Baskakov, S. I., Radio Engineering Circuits with Distributed Parameters, Vysschaya Shkola, Moscow, 1980 (in Russian).

31. Pozar, D. M., Microwave Engineering, 2nv Ed., Chapter 3, Wiley, 1998.

32. Koledintseva, M. Y., J. L. Drewniak, T. P. van Doren, D. J. Pommerenke, M. Cocchini, and D. M. Hockanson, "Method of edge currents for calculating mutual external inductance in a microstrip structure ," Progress In Electromagnetic Research, Vol. 80, 197-224, 2008.
doi:10.2528/PIER07101504