Vol. 117

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

A Multichanneled Filter in a Photonic Crystal Containing Coupled Defects

By Heng-Tung Hsu, Min-Hung Lee, Tzong-Jer Yang, Yu-Chao Wang, and Chien-Jang Wu
Progress In Electromagnetics Research, Vol. 117, 379-392, 2011


ℜOptical filtering properties in a multichanneled transmission filter based on one-dimensional photonic crystal containing the coupled defects are theoretically investigated. The resonant transmission peaks are designed to be located within the photonic band gap of a defect-free photonic crystal. The number of peaks is directly equal to the number of the coupled defects. The positions of resonant peaks can be tuned by varying the refractive index of the defect layer. In addition, extremely resonant peaks can be produced by adding the Bragg mirrors at the front and rear sides of the structure.


Heng-Tung Hsu, Min-Hung Lee, Tzong-Jer Yang, Yu-Chao Wang, and Chien-Jang Wu, "A Multichanneled Filter in a Photonic Crystal Containing Coupled Defects," Progress In Electromagnetics Research, Vol. 117, 379-392, 2011.


    1. Yablonovitch, E., "Inhibited spontaneous emission in solid state physics and electronics," Phys. Rev. Lett., Vol. 58, 2059-2062, 1987.

    2. John, S., "Strong localization of photons in certain disordered lattices," Phys. Rev. Lett., Vol. 58, 2486-2489, 1987.

    3. Joannopoulos, J. D., R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton University Press, Princeton, NJ,1995.

    4. Guida, G., A. de Lustrac, and A. Priou, "An introduction to photonic band gap (PBG) materials," Progress In Electromanetics Research, Vol. 41, 1-20, 2003.

    5. Lin, W.-H., C.-J. Wu, T.-J. Yang, and S.-J. Chang, "Terahertz multichanneled filter in a superconducting photonic crystal," Optics Express, Vol. 18, 27155-27166, 2010.

    6. Shen, W., X. Sun, Y. Zhang, Z. Luo, X. Liu, and P. Gu, "Narrow band filter in both transmission and refleection with metal/dielectric thin films," Optics Communication, Vol. 282, 242-246, 2009.

    7. Sun, X. Z., P. F. Gu, W. D. Shen, X. Liu, Y. Wang, and Y. G. Zhang, "Design and fabrication of a novel reflection filter," Applied Optics, Vol. 46, 2899-2902, 2007.

    8. Ye, Y.-H., J. Ding, D.-Y. Jeong, I. C. Khoo, and Q. M. Zhang, "Finite-size effect on one-dimensional coupled-resonator optical waveguides," Phys. Rev. E, Vol. 69, 056604, 2004.

    9. Nelson, R. L., and J. W. Haus, "One-dimensional photonic crystals in reflection geometry for optical applications ," Appl. Phys. Lett., Vol. 83, 1089-1091, 2003.

    10. Fink, Y., J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos , and L. E. Thomas, "A dielectric omnidirectional reflector," Science, Vol. 282, 1679-1682, 1998.

    11. Li, H. and X. Yang, "Larger absolute band gaps in two-dimensional photonic crystals fabricated by a three-order-effect method," Progress In Electromagnetics Research, Vol. 108, 385-400, 2010.

    12. Wu, C.-J., J.-J. Liao, and T. W. Chang, "Tunable multilayer Fabry-Perot resonator using electro-optical defect layer," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 4, 531-542, 2010.

    13. Rahimi, H, A. Namdar, S. Roshan Entezar, and H. Tajalli, "Photonic transmission spectra in one-dimensional fibonacci multilayer structures containing single-negative metamaterials," Progress In Electromagnetics Research, Vol. 102, 15-30, 2010.

    14. Chen, D., M.-L. Vincent Tse, and H.-Y. Tam, "Optical properties of photonic crystal fibers with a fiber core of arrays of subwavelength circular air holes: Birefringence and dispersion," Progress In Electromagnetics Research, Vol. 105, 193-212, 2010.

    15. Nozhat, N., and N. Granpayeh, "Specialty fibers designed by photonic crystals," Progress In Electromagnetics Research, Vol. 99, 225-244, 2009.

    16. Shi, Y., "A compact polarization beam splitter based on a multimode photonic crystal waveguide with an internal photoniccrystal section ," Progress In Electromagnetics Research, Vol. 103, 393-401, 2010.

    17. Choudhury, P. K., and W. K. Soon, "TE mode propagation through tapered core liquid crystal optical fibers," Progress In Electromagnetics Research, Vol. 104, 449-463, 2010.

    18. Qi, L.-M. and Z. Yang, "Modified plane wave method analysis of dielectric plasma photonic crystal," Progress In Electromagnetics Research, Vol. 91, 319-332, 2009.

    19. Sabah, C. and S. Uckun, "Multilayer system of lorentz/drude type metamaterials with dielectric slabs and its application to electromagnetic filters," Progress In Electromagnetics Research, Vol. 91, 349-364, 2009.

    20. Fu, X., C. Cui, and S. C. Chan, "Optically injected semiconductor laser for photonic microwave frequency mixing in radio-over-fiber," Journal Electromagnetic Waves and Applications, Vol. 24, No. 7, 849-960, 2010.

    21. Orfanidis, S. J., Electromagnetic Waves and Antennas, No. 7, Rutger University, 2008, www.ece.rutgers.edu/»orfanidi/ewa.

    22. Smith, D. R., R. Dalichaouch, N. Kroll, S. Schultz, S. L. McCall, and P. M. Platzman, "Photonic band structure without and with defect in one-dimensional photonic crystal," J. Opt. Soc. Am. B: Optical Physics, Vol. 10, 314-321, 1993.

    23. Wu, C.-J. and Z.-H. Wang, "Properties of defect modes in one-dimensional photonic crystals," Progress In Electromagnetics Research, Vol. 103, 169-184, 2010.

    24. Hsu, H.-T. and C.-J. Wu, "Design rules for a Fabry-Perot narrow band transmission filter containing a metamaterial negative-index defect," Progress In Electromagnetics Research Letters, Vol. 9, 101-107, 2009.

    25. Smolyakov, A. I., E. A. Fourkal, S. I. Krasheninnikov, and N. Sternberg, "Resonant modes and resonant transmission in multi-layer structures," Progress In Electromagnetics Research, Vol. 107, 293-314, 2010.

    26. Hsu, H.-T., T.-W. Chang, T.-J. Yang, B.-H. Chu, and C.-J. Wu, "Analysis of wave properties in photonic crystal narrowband filters with left-handed defect," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 16, 2285-2298, 2010.

    27. Wang, J., S. Qu, H. Ma, J. Hu, Y. Yang, X. Wu, Z. Xu, and M. Hao, "A dielectric resonator-based route to left-handed metamaterials," Progress In Electromagnetics Research B, Vol. 13, 133-150, 2009.

    28. Qiao, F., C. Zhang, and J. Wan, "Photonic quantum-well structure: Multiple channeled filtering phenomena," Appl. Phys. Lett., Vol. 77, 3698-3700, 2000.

    29. Liu, J., J. Sun, C. Huang, W. Hu, and D. Huang, "Optimizing the spectral effciency of photonic quantum well structures," Optik, Vol. 120, 35-39, 2009.

    30. Liu, J., J. Sun, C. Huang, W. Hu, and M. Chen, "Improvement of spectral efficiency based on spectral splitting in photonic quantum-well structures," IET Optoelectron., Vol. 2, 122-127, 2008.

    31. Feng, C. S., L. M. Mei, L. Z. Cai, P. Li, and X. L. Yang, "Resonant modes in quantum well structure of photonic crystals with different lattice constants," Solid State Communications, Vol. 135, 330-334, 2005.

    32. Haxha, S., W. Belhadj, F. Abdelmalek, and H. Bouchriha, "Analysis of wavelength demultiplexer based on photonic crystals," IEE Proc. Optoelectron., Vol. 152, 193-198, 2005.

    33. Jiang, H. T., H. Chen, N.-H. Liu, and S.-Y. Zhu, "Engineering photonic crystal impurity bands for multiple channeled optical switches," Chin. Phys. Lett., Vol. 21, 101-103, 2004.

    34. Yeh, P., Optical Waves in Layered Media, John Wiley & Sons, Singapore, 1998.

    35. Markos, P. and C. M. Soukoulis, Wave Propagation: From Electrons to Photonic Crystals, Princeton University Press, New Jersey, 2008.