Vol. 117
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-06-01
Impedance Measurements of Nonuniform Transmission Lines in Time Domain Using an Improved Recursive Multiple Reflection Computation Method
By
Progress In Electromagnetics Research, Vol. 117, 149-164, 2011
Abstract
In this paper, a recursive computation method is developed to derive the multiple reflections of nonuniform transmission lines. The true impedance profiles of the nonuniform transmission lines are then reconstructed with the help of this method. This method is more efficient than other algorithm. To validate this method, two nonuniform microstrip lines are designed and measured using Agilent vector network analyzer E8363B from 10 MHz to 20 GHz with 10 MHz interval. The reflection coefficients of these nonuniform microstrip lines in time domain are attained from the scattering parameters using inverse Chirp-Z transform. The reconstructed characteristic impedance profiles of the nonuniform lines are compared with those reconstructed by Izydorczyk's algorithm. The agreements of the results illustrate the validity of the recursive multiple reflection computation method in this paper.
Citation
Yu Liu, Ling Tong, Wenxue Zhu, Yu Tian, and Bo Gao, "Impedance Measurements of Nonuniform Transmission Lines in Time Domain Using an Improved Recursive Multiple Reflection Computation Method," Progress In Electromagnetics Research, Vol. 117, 149-164, 2011.
doi:10.2528/PIER11042406
References

1. Lin, D.-B., I.-T. Tang, and Y.-Y. Chang, "Flower-like CPW-FED monopole antenna for quad-band operation of mobile handsets," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 17-18, 2271-2278, 2009.
doi:10.1163/156939309790416116

2. Wang, W., C. Liu, L. Yan, and K. Huang, "A novel power divider based on dual-composite right/left handed transmission line," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 8-9, 1173-1180, 2009.

3. Fallahzadeh, S. and M. Tayarani, "A new microstrip UWB bandpass filter using defected microstrip structures," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 7, 893-902, 2010.
doi:10.1163/156939310791285254

4. Zhang, G.-H., M. Xia, and X.-M. Jiang, "Transient analysis of wire structures using time domain integral equation method with exact matrix elements ," Progress In Electromagnetics Research, Vol. 92, 281-298, 2009.
doi:10.2528/PIER09032003

5. Sharma, R. Y., T. Chakravarty, and A. B. Bhattacharyya, "Transient analysis of microstrip-like interconnections guarded by ground tracks," Progress In Electromagnetics Research, Vol. 82, 189-202, 2008.
doi:10.2528/PIER08021601

6. Khalaj-Amirhosseini, M., "Analysis of nonuniform transmission lines using the equivalent sources," Progress In Electromagnetics Research, Vol. 71, 95-107, 2007.
doi:10.2528/PIER07020801

7. Sheen, D. and D. Shepelsky, "Uniqueness in the simultaneous reconstruction of multiparameters of a transmission line," Progress In Electromagnetics Research, Vol. 21, 153-172, 1999.
doi:10.2528/PIER98072001

8. Navarro, L., E. Mayevskiy, and T. Chairet, "Application of launch point extrapolation technique to measure characteristic impedance of high frequency cables with TDR," Design Conference, 2009.

9. Chen, S.-D. and C.-K. C. Tzuang, "Characteristic impedance and propagation of the first higher order microstrip mode in frequency and time domain," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 5, 1370-1379, May 2002.
doi:10.1109/22.999152

10. Xie, H., J. Wang, D. Sun, R. Fan, and Y. Liu, "Spice simulation and experimental study of transmission lines with TVSs excited by EMP," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 2-3, 401-411, 2010.
doi:10.1163/156939310790735543

11. Ostwald, O., "Time domain measurement using vector network analyzer ZVR," ZVR Application Note, May 1998.

12. Agilent Technologies, , "Time domain analysis using a network analyzer," Application Note, 1287-12, 2007.

13. Hsue, C.-W. and T.-W. Pan, "Reconstruction of nonuniform transmission lines from time-domain reflectometr," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, No. 1, 32-38, January 1997.
doi:10.1109/22.552029

14. TDA Systems, , "PCB interconnect characterization from TDR measurements," Application Note, 1999.

15. De Padua Moreira, R. and L. R. A. X. de Menezes, "Direct synthesis of microwave filters using inverse scattering transmission-line matrix method ," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, No. 12, 2271-2276, 2000.
doi:10.1109/22.898974

16. Jong, J. M., V. K. Tripathi, L. A. Hayden, and B. Janko, "Lossy interconnect modeling from TDR/T measurements," IEEE 3rd Topical Meeting on Electrical Performance of Electronic Packaging, 133-135, 1994.

17. Jaggard, D. L. and P. V. Frangos, "The electromagnetic inverse scattering problem for layered dispersionless dielectrics," IEEE Trans on Antennas and Propagation, Vol. 35, No. 8, 934-946, 1987.
doi:10.1109/TAP.1987.1144206

18. Lin, C. J., C. C. Chiu, S. G. Hsu, and H. C. Liu, "A novel model extraction algorithm for reconstruction of coupled transmission lines in high-speed digital system," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 12, 1595-1609, 2005.
doi:10.1163/156939305775537393

19. Gu, Q. and J. A. Kong, "Transient analysis of single and coupled lines with capacitively-loaded junctions," IEEE Transactions on Microwave Theory and Techniques, Vol. 34, No. 9, 952-964, 1986.
doi:10.1109/TMTT.1986.1133476

20. Izydorczyk, J., "Comments on "Time-domain reflectometry using arbitrary incident waveforms," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 4, 1296-1298, 2003.
doi:10.1109/TMTT.2003.809636

21. Izydorczyk, J., "Microwave time domain reflectometry," Electronics Letters, Vol. 41, No. 15, 848-849, 2005.
doi:10.1049/el:20051696

22. Pozer, D. M., Microwave Engineering, 3rd edition, John Wiley & Sons, Inc, 2005.

23. Yiding, W., W. Yirong, and H. Jun, "Application of inverse Chirp-Z transform in wideband radar," IEEE 2001 International Geoscience And Remote Sensing Symposium, Vol. 4, 1617-1619, 2001.

24. Frickey, A., "Using the inverse Chirp-Z transform for time-domain analysis of simulated radar signals," Proceedings of the 5th International Conference on Signal Processing Applications and Technology, 1366-1371, 1995.

25. Harris, F. J., "On the use of windows for harmonic analysis with the discrete fourier transform," Proceedings of the IEEE, Vol. 66, No. 1, 51-83, 1978.
doi:10.1109/PROC.1978.10837

26. Faraji-Dana, R. and R. L. Chow, "The current distribution and ac resistance of a microstrip structure," IEEE Transactions on Microwave Theory and Techniques, Vol. 38, No. 9, 1268-1277, 1990.
doi:10.1109/22.58653