Vol. 116
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-05-16
Efficient Analysis of Scattering from Multiple 3-d Cavities by Means of a FE-BI-DDM Method
By
Progress In Electromagnetics Research, Vol. 116, 425-439, 2011
Abstract
A finite element-boundary integral-domain decomposition method is presented for analyzing electromagnetic scattering problems involving multiple three-dimensional cavities. Specifically, the edge-based finite element method is applied inside each cavity to derive a linear system of equations associated with unknown fields. The boundary integral equation is then applied on the apertures of all the cavities to truncate the computational domain and to connect the matrix subsystem generated from each cavity. With the help of an iterative domain decomposition method, the coupling system of equations is reduced to a small one which only includes the unknowns on the apertures. To further reduce computational burdens, the multilevel fast multipole algorithm is adopted to solve the reduced system. The numerical results for the near and far fields of several selected multi-cavity problems are presented to demonstrate the validity and capability of the proposed method.
Citation
Zhiwei Cui, Yiping Han, Chang You Li, and Wenjuan Zhao, "Efficient Analysis of Scattering from Multiple 3-d Cavities by Means of a FE-BI-DDM Method," Progress In Electromagnetics Research, Vol. 116, 425-439, 2011.
doi:10.2528/PIER11042309
References

1. Kok, Y. L., "General solution to the multiple-metallic-grooves scattering problem: The fast-polarization case," Applied Opt., Vol. 32, No. 14, 2573-2581, 1993.
doi:10.1364/AO.32.002573

2. Depine, R. A. and D. C. Skigin, "Scattering from metallic surfaces having a finite number of rectangular grooves," J. Opt. Soc. Am. A, Vol. 11, No. 11, 2844-2850, 1994.
doi:10.1364/JOSAA.11.002844

3. Reed, J. A. and D. M. Byrne, "Frequency-selective surfaces with multiple apertures within a periodic cell," J. Opt. Soc. Am. A, Vol. 15, No. 3, 660-668, 1998.
doi:10.1364/JOSAA.15.000660

4. Schiavone, G. A., K. O'Neill, and K. D. Paulsen, "Scattering from groove patterns in a perfectly conducting surface," J. Opt. Soc. Am. A, Vol. 14, No. 9, 660-668, 1997.
doi:10.1364/JOSAA.14.002212

5. Alavikia, B. and O. M. Ramahi, "Finite-element solution of the problem of scattering from cavities in metallic screens using the surface integral equation as a boundary constraint," J. Opt. Soc. Am. A, Vol. 26, No. 9, 1915-1925, 2009.
doi:10.1364/JOSAA.26.001915

6. Altintas, A., P. H. Pathak, and M. C. Liang, "A selective modal scheme for the analysis of EM coupling into or radiation from large open-ended waveguide," IEEE Trans. Antennas Propagat., Vol. 36, No. 1, 84-96, 1988.
doi:10.1109/8.1077

7. Anastassiu, H. T., J. L. Volakis, and D. C. Ross, "The mode matching technique for electromagnetic scattering by cylindrical waveguides with canonical terminations ," Journal of Electromagnetic Waves and Applications, Vol. 9, No. 11-12, 1363-1391, 1995.
doi:10.1163/156939395X00118

8. Wang, T., R. F. Harrington, and J. R. Mautz, "Electromagnetic scattering and transmission through arbitrary apertures in conducting bodies," IEEE Trans. Antennas Propagat., Vol. 38, No. 1, 1805-1814, 1990.
doi:10.1109/8.102743

9. Barkeshli, K. and J. L. Volakis, "Electromagnetic scattering from an aperture formed by a rectangular cavity recessed in a ground plane," Journal of Electromagnetic Waves and Applications, Vol. 5, No. 7, 715-734, 1991.

10. Wang, T. M. and H. Ling, "Electromagnetic scattering from three- dimensional cavities via a connection scheme," IEEE Trans. Antennas Propagat., Vol. 39, No. 10, 1505-1513, Oct. 1991.
doi:10.1109/8.97382

11. Jin, J. M. and J. L. Volakis, "A finite element-boundary integral formulation for scattering by three-dimensional cavity-backed apertures," IEEE Trans. Antennas Propagat., Vol. 39, No. 1, 97-104, Jan. 1991.
doi:10.1109/8.64442

12. Hua, Y. and J. Li, "Analysis of longitudinal shunt waveguide slots using FE-BI," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 14-15, 2041-2046, 2009.
doi:10.1163/156939309789932520

13. Yang, M. L. and X. Q. Sheng, "Parallel high-order FE-BI-MLFMA for scattering by large and deep coated cavities loaded with obstacles," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 13, 1813-1823, 2009.
doi:10.1163/156939309789566932

14. Peng, Z., X.-Q. Sheng, and F. Yin, "An efficient twofold iterative algorithm of FE-BI-MLFMA using multilevel inverse-based ILU preconditioning," Progress In Electromagnetics Research, Vol. 93, 369-384, 2009.
doi:10.2528/PIER09060305

15. Toselli, A. and O. Widlund, Domain Decomposition Methods --- Algorithms and Theory, Springer, Berlin, 2005.

16. Cui, Z. W. and Y. P. Han, "The substructure method for scattering by large open-ended cavities," Chinese Journal of Radio Science, Vol. 24, No. 5, 914-919, Oct. 2009.

17. Martini, E., G. Carli, and S. Maci, "A domain decomposition method based on a generalized scattering matrix formalism and a complex source expansion," Progress In Electromagnetics Research B, Vol. 19, 445-473, 2010.
doi:10.2528/PIERB10012110

18. Song, J. M., C. C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Trans. Antennas Propagat., Vol. 45, No. 10, 1488-1493, 1997.
doi:10.1109/8.633855

19. Gürel, L., O. Ergül, A. Ünal, and T. Malas, "Fast and accurate analysis of large metamaterial structures using the multilevel fast multipole algorithm," Progress In Electromagnetics Research, Vol. 95, 179-198, 2009.
doi:10.2528/PIER09060106

20. Taboada, J. M., M. G. Araújo, J. M. Bértolo, L. Landesa, F. Obelleiro, and J. L. Rodriguez, .

21. Ergül, O., T. Malas, and L. Gürel, "Solutions of largescale electromagnetics problems using an iterative inner-outer scheme with ordinary and approximate multilevel fast multipole algorithms," Progress In Electromagnetics Research, Vol. 106, 203-223, 2010.
doi:10.2528/PIER10061711

22. Ergül, O. and L. Gürel, "Efficient solutions of metamaterial problems using a low-frequency multilevel fast multipole algorithm," Progress In Electromagnetics Research, Vol. 108, 81-99, 2010.
doi:10.2528/PIER10071104

23. Shao, H., J. Hu, Z.-P. Nie, G. Han, and S. He, "Hybrid tangential equivalence principle algorithm with MLFMA for analysis of array structures," Progress In Electromagnetics Research, Vol. 113, 127-141, 2011.

24. Jin, J. M., "The Finite Element Method in Electromagnetics," Wiley, New York, 2002.

25. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 30, No. 3, 409-418, 1982.
doi:10.1109/TAP.1982.1142818

26. Liu, J. W. H., "The multifrontal method for sparse matrix solution: Theory and practice," SIAM Rev., Vol. 34, 82-109, 1992.
doi:10.1137/1034004

27. Tian, J., Z.-Q. Lv, X.-W. Shi, L. Xu, and F. Wei, "An efficient approach for multifrontal algorithm to solve non-positive-definite ¯nite element equations in electromagnetics problems," Progress In Electromagnetics Research, Vol. 95, 121-133, 2009.
doi:10.2528/PIER09070207

28. Irons, B. M., "A frontal solution program for finite element analysis," SIAM Rev., Vol. 2, 5-32, 1970.

29. Ping, X. W., T. J. Cui, and W. B. Lu, "The combination of bcgstab with multifrontal algorithm to solve FE-BI-MLFMA linear systems arising from inhomogeneous electromagnetic scattering problems," Progress In Electromagnetics Research, Vol. 93, 91-105, 2009.
doi:10.2528/PIER09050604

30. Ergül, O. and L. Gürel, "Improving iterative solutions of the electric¯eld integral equation via transformations into normal equations ," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 16, 2129-2138, 2010.
doi:10.1163/156939310793699082