Vol. 116

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2011-04-27

Consistent Formalism for the Momentum of Electromagnetic Waves in Lossless Dispersive Metamaterials and the Conservation of Momentum

By Yingran He, Katus Maski, and Sailing He
Progress In Electromagnetics Research, Vol. 116, 81-106, 2011
doi:10.2528/PIER11032006

Abstract

A new formalism for electromagnetic and mechanical momenta in a metamaterial is developed by means of the technique of wave-packet integrals. The medium has huge mass density and can therefore be regarded as almost stationary upon incident electromagnetic waves. A clear identification of momentum density and momentum flow, including their electromagnetic and mechanical parts, is obtained by employing this formalism in a lossless dispersive metamaterial (including the cases of impedance matching and mismatching with vacuum). It is found that the ratio of the electromagnetic momentum density to the mechanical momentum density depends on the impedance and group velocity of the electromagnetic wave inside the metamaterial. One of the definite results is that both the electromagnetic momentum and the mechanical momentum in the metamaterial are in the same direction as the energy flow, instead of in the direction of the wave vector. The conservation of total momentum is verified. In addition, the law of energy conservation in the process of normal incidence is also verified by using the wave-packet integral of both the electromagnetic energy density and the electromagnetic p

Citation


Yingran He, Katus Maski, and Sailing He, "Consistent Formalism for the Momentum of Electromagnetic Waves in Lossless Dispersive Metamaterials and the Conservation of Momentum," Progress In Electromagnetics Research, Vol. 116, 81-106, 2011.
doi:10.2528/PIER11032006
http://jpier.org/PIER/pier.php?paper=11032006

References


    1. Jackson, J. D., Classical Electrodynamics, New York, Wiley, 1999.

    2. Abraham, "M. Rend. Circ. Matem. Palermo,", Vol. 28, No. 1, 1909.

    3. Minkowski, Nachr. Ges. Wiss. Gottn Math. Phys. KI., Vol. 53, 1908.

    4. Jones, R. V. and J. C. S. Richards, "The pressure of radiation in a refracting medium," Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 221, No. 1147, 480-498, 1954.
    doi:10.1098/rspa.1954.0043

    5. Gordon, J. P., "Radiation forces and momenta in dielectric media," Physical Review A, Vol. 8, No. 1, 14-21, 1973.
    doi:10.1103/PhysRevA.8.14

    6. Mikura, Z., "Variational formulation of the electrodynamics of fluids and its application to the radiation pressure problem ," Physical Review A, Vol. 13, No. 6, 2265, 1976.
    doi:10.1103/PhysRevA.13.2265

    7. Peierls, R., The momentum of light in a refracting medium, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 347, No. 1651, 475-491, 1976.

    8. Jones, R. V., Radiation pressure of light in a dispersive medium, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 360, No. 1702, 365-371, 1978.

    9. Nelson, D. F., "Momentum, pseudomomentum, and wave momentum: Toward resolving the Minkowski-Abraham controversy," Physical Review A, Vol. 44, No. 6, 3985-3966, 1991.
    doi:10.1103/PhysRevA.44.3985

    10. Loudon, R., L. Allen, and D. F. Nelson, "Propagation of electromagnetic energy and momentum through an absorbing dielectric," Physical Review E, Vol. 55, No. 1, 1071-1085, 1997.
    doi:10.1103/PhysRevE.55.1071

    11. Obukhov, Y. N. and F. W. Hehl, "Electromagnetic energy-momentum and forces in matter," Physics Letters A, Vol. 311, No. 4-5, 277-284, 2003.
    doi:10.1016/S0375-9601(03)00503-6

    12. Mansuripur, M., "Radiation pressure and the linear momentum of the electromagnetic field," Opt. Express, Vol. 12, No. 22, 5375-5401, 2004.
    doi:10.1364/OPEX.12.005375

    13. Kemp, B., T. Grzegorczyk, and J. Kong, "Ab initio study of the radiation pressure on dielectric and magnetic media," Opt. Express, Vol. 13, No. 23, 9280-9291, 2005.
    doi:10.1364/OPEX.13.009280

    14. Mansuripur, M., "Radiation pressure and the linear momentum of light in dispersive dielectric media," Opt. Express, Vol. 13, No. 6, 2245-2250, 2005.
    doi:10.1364/OPEX.13.002245

    15. Scalora, M., et al., "Radiation pressure of light pulses and conservation of linear momentum in dispersive media," Physical Review E, Vol. 73, No. 5, 056604, 2006.
    doi:10.1103/PhysRevE.73.056604

    16. Mansuripur, M., "Radiation pressure and the linear momentum of the electromagnetic field in magnetic media," Opt. Express, Vol. 15, No. 21, 13502-13518, 2007.
    doi:10.1364/OE.15.013502

    17. Obukhov, Y. N. and F. W. Hehl, "Electrodynamics of moving magnetoelectric media: Variational approach," Physics Letters A, Vol. 371, No. 1-2, 11-19, 2007.
    doi:10.1016/j.physleta.2007.08.026

    18. Ramos, T., G. F. Rubilar, and Y. N. Obukhov, "Relativistic analysis of the dielectric Einstein box: Abraham, Minkowski and total energy-momentum tensors," Physics Letters A, Vol. 375, No. 16, 1703-1709, 2011.
    doi:10.1016/j.physleta.2011.03.015

    19. Yaghjian, A. D., "Internal energy, Q-energy, Poynting's theorem, and the stress dyadic in dispersive material," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 6, 1495-1505, 2007.
    doi:10.1109/TAP.2007.897350

    20. Brevik, I., "Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor," Physics Reports, Vol. 52, No. 3, 133-201, 1979.
    doi:10.1016/0370-1573(79)90074-7

    21. Pfeifer, R. N. C., et al., "Colloquium: Momentum of an electromagnetic wave in dielectric media," Reviews of Modern Physics, Vol. 79, No. 4, 1197-1216, 2007.
    doi:10.1103/RevModPhys.79.1197

    22. Obukhov, Y. N., "Electromagnetic energy and momentum in moving media," Annalen der Physik, Vol. 17, No. 9-10, 830-851, 2008.
    doi:10.1002/andp.200810313

    23. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of permittivity and permeability," Sov. Phys. Usp., Vol. 10, 509-514, 1968.
    doi:10.1070/PU1968v010n04ABEH003699

    24. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 5514, 77-79, 2001.
    doi:10.1126/science.1058847

    25. Pendry, J. B., "Negative refraction makes a perfect lens," Physical Review Letters, Vol. 85, No. 18, 3966-3969, 2000.
    doi:10.1103/PhysRevLett.85.3966

    26. Kemp, B. A., J. A. Kong, and T. M. Grzegorczyk, "Reversal of wave momentum in isotropic left-handed media," Physical Review A, Vol. 75, No. 5, 053810, 2007.
    doi:10.1103/PhysRevA.75.053810

    27. Veselago, V. G., "Energy, linear momentum, and mass transfer by an electromagnetic wave in a negative-refraction medium," Physics-Uspekhi, Vol. 52, No. 6, 649-654, 2009.
    doi:10.3367/UFNe.0179.200906j.0689

    28. Barnett, S. M., "Resolution of the Abraham-Minkowski Dilemma," Physical Review Letters, Vol. 104, No. 7, 070401, 2010.
    doi:10.1103/PhysRevLett.104.070401

    29. Einstein, A. and J. Laub, Ann. Physik, Vol. 26, No. 541, 1908.