Vol. 117
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-05-30
Second-Order Scattering Induced Reflection Divergence and Nonlinear Depolarization on Randomly Corrugated Semiconductor Nano-Pillars
By
Progress In Electromagnetics Research, Vol. 117, 67-81, 2011
Abstract
Second-order scattering induced reflection divergence and nonlinear depolarization on randomly sub-wavelength corrugated semiconductor nano-pillar surface is observed, which explains the nonlinear transverse electric (TE)/transverse magnetic (TM) mode transformation of the nano-pillar surface reflection with diminishing Brewster angle. The reflected polarization ratios are degraded from 97.5% to 53% and from 96.8% to 40% under TM- and TE-mode incidences by increasing Si nano-pillar height from 30 to 240 nm. A small-perturbation modeling corroborates the scattering induced second-order polarization transformation to depolarize the reflection from highly corrugated Si nano-pillar surface. The lower polarization ratio at TE-mode reflection caused by a severer inhomogeneous Si nano-pillars oriented in parallel with surface normal is concluded. With field polarization ratio under TM-mode incidence, the angular dependent reflectance spectra with a gradually diminished and shifted Brewster angle from 74o to 45o can be simulated. The nano-roughened surface induced second-order scattering model correlates the diminishing Brewster angle with the surface depolarized reflection.
Citation
Gong-Ru Lin, Fan-Shuen Meng, and Yung-Hsiang Lin, "Second-Order Scattering Induced Reflection Divergence and Nonlinear Depolarization on Randomly Corrugated Semiconductor Nano-Pillars," Progress In Electromagnetics Research, Vol. 117, 67-81, 2011.
doi:10.2528/PIER11031908
References

1. Kanamori, Y., M. Sasaki, and K. Hane, "Broadband antireflection gratings fabricated upon silicon substrates," Opt. Lett., Vol. 24, 1422-1424, 1999.
doi:10.1364/OL.24.001422

2. Hattori, H., "Anti-reflection surface with particles coating deposited by electrostatic attraction ," Adv. Mater., Vol. 13, No. 1, 51-54, 2001.
doi:10.1002/1521-4095(200101)13:1<51::AID-ADMA51>3.0.CO;2-F

3. Lee, C., S. Y. Bae, S. Mobasser, and H. Manohara, "A novel silicon nanotips antireflection surface for the micro sun sensor," Nano Lett., Vol. 5, 2438-2442, 2005.
doi:10.1021/nl0517161

4. Peng, K. Q., Y. Xu, Y. Wu, Y. Yan, S. T. Lee, and J. Zhu, "Aligned single-crystalline Si nanowire arrays for photovoltaic applications," Small, Vol. 1, 1062-1067, 2005.
doi:10.1002/smll.200500137

5. Diedenhofen, S. L., G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas , "Broad-band omnidirectional antireflection coatings based on semiconductor nanorods ," Adv. Mater., Vol. 21, 973-978, 2009.
doi:10.1002/adma.200802767

6. Ding, B., M. Bardosova, I. Povey, M. E. Pemble, and S. G. Romanov, "Engineered light scattering in colloidal photonic heterocrystals," Adv. Funct. Mater., Vol. 20, 853-860, 2010.
doi:10.1002/adfm.200901319

7. Wan, D., H. L. Chen, T. C. Tseng, C. Y. Fang, Y. S. Lai, and F. Y. Yeh, "Antireflective nanoparticle arrays enhance the e±ciency of silicon solar cells," Adv. Funct. Mater., Vol. 20, 3064-3075, 2010.
doi:10.1002/adfm.201000678

8. Huang, Y.-F., S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, and K.-H.Chen, "Improved broadband and quasi-omnidirectional anti-re°ection properties with biomimetic silicon nanostructures ," Nature Nanotechnol., Vol. 2, 770-774, 2007.
doi:10.1038/nnano.2007.389

9. Renau, J., P. K. Cheo, and H. G. Cooper, "Depolarization of linearly polarized EM waves backscattered from rough metals and inhomogeneous dielectrics," J. Opt. Soc. Am., Vol. 57, 459-461, 1967.
doi:10.1364/JOSA.57.000459

10. Muskens, O. L., S. L. Diedenhofen, M. H. M. V. Weert, M. T. BorgstrÄom, E. P. A. M. Bakkers, and J. G. Rivas, "Epitaxial growth of aligned semiconductor nanowire metamaterials for photonic applications," Adv. Funct. Mater., Vol. 18, 1039-1046, 2008.
doi:10.1002/adfm.200701337

11. Wang, M.-J., Z.-S. Wu, and Y.-L. Li, "Investigation on the scattering characteristics of gaussian beam from two dimensional dielectric rough surfaces based on the kirchhoff approximation ," Progress In Electromagnetics Research B, Vol. 4, 223-235, 2008.
doi:10.2528/PIERB08010903

12. Du, Y. and B. Liu, "A numerical method for electromagnetic scattering from dielectric rough surfaces based on the stochastic second degree method ," Progress In Electromagnetics Research, Vol. 97, 327-342, 2009.
doi:10.2528/PIER09092501

13. Lin, Z. W., X. J. Zhang and G. Y. Fang, "Theoretical model of electromagnetic scattering from 3D multi-layer dielectric media with slightly rough surfaces ," Progress In Electromagnetics Research, Vol. 96, 37-62, 2009.
doi:10.2528/PIER09061102

14. Durian, D. J., D. A. Weitz, and D. J. Pine, "Multiple light-scattering probes of foam structure and dynamics," Science, Vol. 252, 686-688, 2010.

15. Kim, K. S., S. M. Kim, H. Jeong, M. S. Jeong, and G. Y. Jung, "Enhancement of light extraction through the wave-guiding effect of ZnO sub-microrods in InGaN blue light-emitting diodes," Adv. Funct. Mater., Vol. 20, 1076-1082, 2010.
doi:10.1002/adfm.200901935

16. Huang, F., D. Chen, X. L. Zhang, and R. A. Caruso, "Dual-function scattering layer of submicrometer-sized mesoporous TiO2 beads for high-e±ciency dye-sensitized solar cells," Adv. Funct. Mater., Vol. 20, 1301-1305, 2010.
doi:10.1002/adfm.200902218

17. Handapangoda, C. C., M. Premaratne, and P. N Pathirana, "Plane wave scattering by a spherical dielectric particle in motion: A relativistic extension of the Mie theory," Progress In Electromagnetics Research, Vol. 112, 349-379, 2011.

18. Liang, D., P. Wu, L. Tsang, Z. Gui, and K.-S. Chen, "Electromagnetic scattering by rough surfaces with large heights and slopes with applications to microwave remote sensing of rough surface over layered media ," Progress In Electromagnetics Research, Vol. 95, 199-218, 2009.
doi:10.2528/PIER09071413

19. Chy'lek, P., G. W. Grams, and R. G. Pinnick, "Light scattering by irregular randomly oriented particles," Science, Vol. 193, 480-482, 1976.

20. Leader, J. C. and W. A. J. Dalton, "Bidirectional scattering of electromagnetic waves from the volume of dielectric materials," J. Appl. Phys., Vol. 43, No. 7, 3080-3090, 1972.
doi:10.1063/1.1661663

21. Wilhelmi, G. J., J. W. Rouse and A. J. Blanchard, "Depolarization of light back scattered from rough dielectrics," J. Opt. Soc. Am., Vol. 65, 1036-1042, 1975.
doi:10.1364/JOSA.65.001036

22. Rouse, J. W., "The effect of the subsurface on the depolarization of rough-surface backscatter," Radio Sci., Vol. 7, 889-895, 1972.
doi:10.1029/RS007i010p00889

23. Vesperinas, M. N., "Depolarization of electromagnetic waves scattered from slightly rough random surfaces: A study by means of the extinction theorem," J. Opt. Soc. Am. A, Vol. 72, 539-547, 1982.

24. Rojas-Ochoa, L. F., D. Lacoste, R. Lenke, P. Schurtenberger, and F. Scheffold, "Depolarization of backscattered linearly polarized light," J. Opt. Soc. Am. A, Vol. 21, 1799-1804, 2004.
doi:10.1364/JOSAA.21.001799

25. Hecht, E., Optics, Addison Wesley, San Francisco, 2002.

26. Lin, G.-R., Y. C. Chang, E. S. Liu, H. C. Kuo, and H. S. Lin, "Low refractive index Si nanopillars on Si substrate," Appl. Phys. Lett., Vol. 90, 181923, 2007.
doi:10.1063/1.2736281

27. Bicout, D., C. Brosseau, A. S. Martinez, and J. M. Schmitt, "Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter," Phys. Rev. E, Vol. 49, 1767-1770, 1994.
doi:10.1103/PhysRevE.49.1767

28. Mittal, G. and D. Singh, "Critical analysis of microwave scattering response on roughness parameter and moisture content for periodic rough surfaces and its retrieval ," Progress In Electromagnetics Research, Vol. 100, 129-152, 2010.
doi:10.2528/PIER09091705

29. Valenzuela, G. R., "Depolarization of EM waves by slightly rough surfaces," IEEE Trans. Antennas Propag., Vol. 15, 552-557, 1967.
doi:10.1109/TAP.1967.1138962

30. Guo, L.-X., A.-Q. Wang, and J. Ma, "Study on EM scattering from 2-D target above 1-D large scale rough surface with low grazing incidence by parallel MoM based on PC clusters ,", Vol. 89, 149-166, 2009.