Vol. 116
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-05-17
CUDA Implementation in the EM Scattering of a Three-Layer Canopy
By
Progress In Electromagnetics Research, Vol. 116, 457-473, 2011
Abstract
Calculating the EM scattering fields from a three-layer canopy which comprises of many leaves, trunks and the ground needs intensive computational burden, when the area becomes large and obviously lames the application of the traditional serial algorithm. With the development of graphics hardware, the Graphics Processing Unit (GPU) can be used to calculate the electromagnetic (EM) scattering problems parallelly. In this paper, the Compute Unified Device Architecture (CUDA) is combined with the four-path method and the reciprocity theorem to predict the EM scattering properties from scatterers which are sampled by using Monte-Carlo method in a three-layer canopy model. We get a highest speedup of 294 times in comparison with the original serial algorithm on a Core (TM) i5 CPU with a GTS460 GPU as a coprocessor.
Citation
Wang-Qiang Jiang, Min Zhang, Hui Chen, and Yong-Ge Lu, "CUDA Implementation in the EM Scattering of a Three-Layer Canopy," Progress In Electromagnetics Research, Vol. 116, 457-473, 2011.
doi:10.2528/PIER11031702
References

1. Levine, D., "The radar cross section of dielectric disks," IEEE Trans. Antennas Propag., Vol. 32, No. 11, 6-12, 1984.
doi:10.1109/TAP.1984.1143180

2. Gay-Fernandez, J. A., M. Garcia Sanchez, I. Cuinas, A. V. Alejos, J. G. Sanchez, and J. L. Miranda-Sierra, "Propagation analysis and deployment of a wireless sensor network in a forest," Progress In Electromagnetics Research, Vol. 106, 121-145, 2010.
doi:10.2528/PIER10040806

3. Schiffer, R. and K. O. Thielheim, "Light scattering by dielectric needles and disks," Appl. Phys., Vol. 50, No. 4, 2476-2483, 1979.

4. Bonafoni, S., F. Alimenti, G. Angelucci, and G. Tasselli, "Microwave radiometry imaging for forest fire detection: a simulation study," Progress In Electromagnetics Research, Vol. 112, 77-92, 2011.

5. Karam, M. A., A. K. Fung, and M. M. Antar, "Electromagnetic wave scattering from some vegetation samples," IEEE Trans. Geosci. Remote Sensing, Vol. 26, No. 6, 799-808, 1988.
doi:10.1109/36.7711

6. Meng, Y. S., Y. H. Lee, and B. C. Ng, "Experimental dynamical evolution of the brillouin precursor for broadband wireless communication through vegetation," Progress In Electromagnetics Research, Vol. 111, 291-309, 2011.

7. Du, Y., Y. Luo, W. Z. Yan, and J. A. Kong, "High angular resolution measurements of the monostatic backscattering coefficient of rice fields," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 1, 1-10, 2009.
doi:10.1163/156939309787604689

8. Du, Y., W.-Z. Yan, J.-C. Shi, Z. Li, and E.-X. Chen, "Electromagnetic scattering from a corn canopy at L and C Bands," Progress In Electromagnetics Research, Vol. 114, 33-49, 2011.

9. Singh, D., V. Srivastava, B. Pandey, and D. Bhimsaria, "Application of neural network with error correlation and time evolution for retrieval of soil moisture and other vegetation variables," Progress In Electromagnetics Research B, Vol. 15, 245-265, 2009.
doi:10.2528/PIERB09043003

10. Ulaby, F. T., K. Sarabandi, K. McDonald, et al. "Michigan microwave canopy scattering model (MIMICS)," Int. J. Remote Sensing, Vol. 11, No. 7, 1223-1253, 1990.
doi:10.1080/01431169008955090

11. Johnson, J. T., "A study of the four-path model for scattering from an object above a half space surface," Microwave and Optical Technology Letters, Vol. 30, No. 2, 130-134, 2001.
doi:10.1002/mop.1242

12. Koay, J. Y., H. T. Ewe, and H. T. Chuah, "Effects of fresnel corrections in the scattered field of general ellipsoids," Progress In Electromagnetics Research Proceedings, Vol. 3, No. 2, 213-214, March 26-30, 2007.

13. Acquista, C., "Light scattering by tenuous particles: a generalization of the Rayleigh-Gans Rocard approach," Appl. Opt., Vol. 15, No. 11, 2932-2936, 1976.
doi:10.1364/AO.15.002932

14. Sarabandi, K., P. F. Polatin, and F. T. Ulaby, "Monte carlo simulation of scattering from a layer of vertical cylinders," IEEE Trans. on Antennas and Propagation, Vol. 41, No. 4, 465-473, 1993.
doi:10.1109/8.220978

15. Garland, M., S. Le Grand, J. Nickolls, et al. "Parallel computing experiences with CUDA," IEEE Micro., Vol. 28, No. 4, 13-27, 2008.
doi:10.1109/MM.2008.57

16. Hwu, W. M., C. Rodrigues, S. Ryoo, and J. Stratton, "Compute unified device architecture application suitability," Computing in Science & Engineering, Vol. 11, No. 3, 16-26, 2009.
doi:10.1109/MCSE.2009.48

17. Tao, Y. B., H. Lin, and H. J. Bao, "From CPU to GPU: GPU-based electromagnetic computing (GPUECO)," Progress In Electromagnetics Research, Vol. 81, 1-19, 2008.
doi:10.2528/PIER07121302

18. Zainud-Deen, S. H., E. El-Deen, M. S. Ibrahim, K. H. Awadalla, and A. Z. Botros, "Electromagnetic scattering using GPU-based finite difference frequency domain method," Progress In Electromagnetics Research B, Vol. 16, 351-369, 2009.
doi:10.2528/PIERB09060703

19. Jiang, W. Q., M. Zhang, and Y. Wang, "CUDA-based radiative transfer method with its application to the EM scattering from a two-layer canopy model," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17-18, 2509-2521, 2010.
doi:10.1163/156939310793675772

20. Donno, D. D., A. Esposito, L. Tarricone, and L. Catarinucci, "Introduction to GPU computing and CUDA programming: a case study on FDTD," IEEE Antennas Propag. Mag., Vol. 52, No. 3, 117-122, 2010.

21. Gao, P. C., Y. B. Tao, and H. Lin, "Fast RCS prediction using multiresolution shooting and bouncing ray method on the GPU," Progress In Electromagnetics Research, Vol. 107, 187-202, 2010.
doi:10.2528/PIER10061807

22. Zunoubi, M. R., J. Payne, and W. P. Roach, "CUDA implementation of TEz-FDTD solution of Maxwell's equations in dispersive media ," IEEE Antennas Wireless Propag. Lett., Vol. 9, 756-759, 2010.
doi:10.1109/LAWP.2010.2060181

23. Xu, K., Z. H. Fan, D. Z. Ding, and R. S. Chen, "GPU accelerated unconditionally stable crank-nicolson FDTD method for the analysis of three-dimensional microwave circuits," Progress In Electromagnetics Research, Vol. 102, 381-395, 2010.
doi:10.2528/PIER10020606

24. Tao, Y., H. Lin, and H. Bao, "GPU-based shooting and bouncing ray method for fast RCS prediction," IEEE Trans. Antennas Propag., Vol. 28, No. 2, 494-502, 2010.

25. Zhang, M., Y. X. Song, et al. "Simulation of low-grazing scattering properties of vegetation," Chin. Phys. Lett., Vol. 20, No. 4, 502-505, 2003.
doi:10.1088/0256-307X/20/4/318

26. Du, Y., Y. Luo, W. Z. Yan, and J. A. Kong, "An electromagnetic scattering model for soybean canopy," Progress In Electromagnetics Research, Vol. 79, 209-223, 2008.
doi:10.2528/PIER07101603

27. Karam, M. A. and A. K. Fung, "Leaf-shape effects in electromagnetic wave scattering from vegetation," IEEE Trans. Geosci. Remote Sens., Vol. 27, No. 6, 687-697, 1989.
doi:10.1109/TGRS.1989.1398241

28. Matthaeis, P. D. and R. H. Lang, "Microwave scattering models for cylindrical vegetation components," Progress In Electromagnetics Research, Vol. 55, 307-333, 2005.
doi:10.2528/PIER05040602

29. Toan, T. L., F. Ribbes, L. F. Wang, N. Floury, K. H. Ding, J. A. Kong, M. Fujita, and T. Kurosu, "Rice crop mapping and monitoring using ERS-1 data based on experiment and modeling results," IEEE Trans. Geosci. Remote Sens., Vol. 35, No. 1, 41-56, 1997.
doi:10.1109/36.551933

30. Yueh, S. H., J. A. Kong, J. K. Jao, R. T. Shin, and T. L. Toan, "Branching model for vegetatation," IEEE Trans. Geosci. Remote Sens., Vol. 30, No. 2, 390-402, 1992.
doi:10.1109/36.134088

31. Wang, L., J. A. Kong, K. H. Ding, T. L. Toan, F. R. Baillarin, and N. Floury, "Electromagnetic scattering model for rice canopy based on monte carlo simulation," Progress In Electromagnetics Research, Vol. 52, 153-171, 2005.
doi:10.2528/PIER04080601

32. Lang, R. H., "Electromagnetic backscattering from a sparse distribution of lossy dielectric scatterers," Radio Science, Vol. 16, No. 1, 15-30, 1981.
doi:10.1029/RS016i001p00015

33. Au, W. C., L. Tsang, R. T. Shin, and J. A. Kong, "Collective scattering and absorption effects in microwave interaction with vegetation canopy," Progress In Electromagnetics Research, Vol. 14, 181-231, 1996.

34. Sarabandi, K. and P. F. Polatin, "Electromagnetic scattering from two adjacent objects," IEEE Trans. Antennas Propag., Vol. 42, No. 4, 510-517, 1994.
doi:10.1109/8.286219

35. Ruck, G. T., D. E. Barrick, W. D. Stuart, and C. K. Krichbaum, Radar Cross Section Handbook, Plenum Press, New York and London, 1970.