Vol. 114

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2011-03-10

Subwavelength Array of Planar Triangle Monopoles with Cross Slots Based on Far-Field Time Reversal

By Guang-Ding Ge, Duo Wang, and Bing-Zhong Wang
Progress In Electromagnetics Research, Vol. 114, 429-441, 2011
doi:10.2528/PIER11021701

Abstract

A subwavelength array of planar triangle monopole antennas is proposed and discussed in this paper. Each element of the array is etched with many cross slots which bring no effects to the element's performances of voltage standing wave ratio and far-field radiation patterns. An important property of this antenna is that if multiple such planar antennas are placed face to face, the proposed array can perform time-reversal far-field focusing with a super-resolution as small as one twentieth of a wavelength. The proposed subwavelength array is easy to design and convenient for integration.

Citation


Guang-Ding Ge, Duo Wang, and Bing-Zhong Wang, "Subwavelength Array of Planar Triangle Monopoles with Cross Slots Based on Far-Field Time Reversal," Progress In Electromagnetics Research, Vol. 114, 429-441, 2011.
doi:10.2528/PIER11021701
http://jpier.org/PIER/pier.php?paper=11021701

References


    1. Bellomo, L., S. Pioch, M. Saillard, and E. Spano, "Time reversal experiments in the microwave range: Description of the radar and results," Progress In Electromagnetics Research, Vol. 104, 427-448, 2010.
    doi:10.2528/PIER10030102

    2. Zhang, W., A. Hoorfar, and L. Li, "Through-the-wall target localization with time reversal music method," Progress In Electromagnetics Research, Vol. 106, 75-89, 2010.
    doi:10.2528/PIER10052408

    3. Dmitriev, V., "Space-time reversal symmetry propensties of electromagnetic Green's tensors for complex and bianisotropic media," Progress In Electromagnetics Research, Vol. 48, 145-184, 2004.
    doi:10.2528/PIER04020501

    4. De Cos, M. E., Y. Alvarez lopez, and F. Las-Heras, "Planar artificial magnetic conductor: Design and characterization setup in the RFID SHF band," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 11-12, 1467-1478, 2009.
    doi:10.1163/156939309789476248

    5. Jarchi, S., J. Rashed-Mohassel, and R. Faraji-Dana, "Analysis of microstrip dipole antennas on a layered metamaterial substrate," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 5-6, 755-764, 2010.
    doi:10.1163/156939310791036278

    6. Yang, C.-F., M. Cheung, C.-Y. Huang, and J.-S. Sun, "Print a compact single- and quad-band slot antenna on ceramic substrate," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 13, 1697-1707, 2010.

    7. Gurel, C. S. and E. Yazgan, "Resonant frequency of air gap tuned circular microstrip antenna with anisotropic substrate and superstrate layers," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 13, 1731-1740, 2010.

    8. Ling, J., S.-X. Gong, B. Lu, H.-W. Yuan, W.-T. Wang, and S. Liu, "A microstrip printed dipole antenna with UC-EBG ground for RCS reduction ," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5-6, 607-616, 2009.
    doi:10.1163/156939309788019868

    9. Yeo, J. and D. Kim, "Novel tapered AMC structures for backscattered RCS reduction," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5-6, 697-709, 2009.
    doi:10.1163/156939309788019804

    10. De Cos, M. E., Y. Alvarez Lopez, and F. Las-Heras, "A novel approach for RCS reduction using a combination of artificial magnetic conductors," Progress In Electromagnetics Research, Vol. 107, 147-159, 2010.
    doi:10.2528/PIER10060402

    11. Zhang, Y., B. Z.Wang, W. Shao, W. Yu, and R. Mittra, "Artificial ground planes for performance enhancement of microstrip antennas ," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 4, 597-606, 2011.
    doi:10.1163/156939311794500269

    12. Wei, F., L. Chen, X.-W. Shi, Q.-Y.Wu, and Q.-L. Huang, "Design of compact UWB power divider with one narrow notch-band," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17-18, 2343-2352, 2010.
    doi:10.1163/156939310793675637

    13. Xu, H.-Y., H. Zhang, X. Yin, and K. Lu, "Ultra-wideband Koch fractal antenna with low backscattering cross section," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17-18, 2615-72623, 2009.

    14. Guo, N., B. M. Sadler, and R. C. Qiu, "Reduced-complexity UWB time-reversal techniques and experimental results," IEEE Trans. Wireless Commun., Vol. 6, No. 12, 4221-4226, Dec. 2007.
    doi:10.1109/TWC.2007.060251

    15. Lerosey, G., J. de Rosny, A. Tourin, A. Derode, G. Montaldo, and and, "Time reversal of electromagnetic waves," Phys. Rev. Lett., Vol. 92, No. 19, 193904-1-3, May 2004.
    doi:10.1103/PhysRevLett.92.193904

    16. Lerosey, G., J. de Rosny, A. Tourin, A. Derode, and M. Fink, "Time reversal of wideband microwaves," Appl. Phys. Lett., Vol. 88, 154101-1-4, Apr. 2006.

    17. Scott, I., A. Vukovic, and P. Sewell, "Krylov acceleration techniques for time-reversal design applications ," IEEE Trans. Microwave Theory Tech., Vol. 58, No. 4, 917-922, Apr. 2010.
    doi:10.1109/TMTT.2010.2042634

    18. Jin, Y., J. M. F. Moura, and N. O'donoughue, "Time-reversal in multipleinput multipleoutput radar," IEEE J. Selected Topics in Signal Processing, Vol. 4, No. 1, 210-225, Feb. 2010.
    doi:10.1109/JSTSP.2009.2038983

    19. Jin, Y. and J. M. F. Moura, "Time-reversal detection using antenna array," IEEE Trans. Signal Processing, Vol. 57, No. 4, 1396-1414, Apr. 2009.
    doi:10.1109/TSP.2008.2010425

    20. Song, H. C., W. S. Hodgkiss, W. A. Kuperman, T. Akal, and M. Stevenson, "Multiuser communications using passive time reversal," IEEE Journal of Oceanic Engineering, Vol. 32, No. 4, 915-922, Oct. 2007.
    doi:10.1109/JOE.2007.904311

    21. De Rosny, J. and M. Fink, "Overcoming the diffraction limit in wave physics using a time-reversal mirror and a novel acoustic sink ," Phy. Rev. Lett., Vol. 89, 1-4, Sep. 2002.

    22. Conti, S. G., P. Roux, and W. A. Kuperman, "Near-field time-reversal amplification," J. Acoust. Soc. Amer., Vol. 121, 3602-3606, Mar. 2007.
    doi:10.1121/1.2724238

    23. Lerosey, G., J. de Rosny, A. Tourin, and M. Fink, "Focusing beyong the diffraction limit with far-field time reversal," Science, Vol. 315, 1119-1122, Feb. 2007.

    24. Rosny, J. D. and M. Fink, "Focusing properties of near-field time reversal," Phys. Rev. A, Vol. 92, 1-4, Dec. 2007.

    25. Fink, M., "Time-reversal waves and super resolution," The 4th AIP International Conference and the 1st Congress of the IPIA,, 1-29, 2008.

    26. Carminati, R., R. Perrat, J. de Rosny, and M. Fink, "Theory of the time reversal cavity for electromagnetic fields," Optics Lett., Vol. 32, No. 21, 3107-3109, Nov. 2007.
    doi:10.1364/OL.32.003107

    27. Xiao, S., J. Chen, B.-Z. Wang, and X. Liu, "A numerical study on time-reversal electromagnetic wave for indoor ultra-wideband signal transmission," Progress In Electromagnetics Research, Vol. 77, 329-342, 2007.
    doi:10.2528/PIER07082501

    28. Liu, X., B.-Z.Wang, and L.-W. Li, "Tradeoff of transmitted power in time reversed impulse radio ultra-wideband communications," IEEE Antenna Wireless Propag. Lett., Vol. 8, 1426-1429, 2009.

    29. Liu, X., B.-Z. Wang, S. Xiao, and S. Lai, "Post-time-reversed MIMO ultrawideband transmission scheme," IEEE Trans. Antennas Propag., Vol. 58, No. 5, 1731-1738, May 2010.
    doi:10.1109/TAP.2010.2044318

    30. Wang, D., B.-Z. Wang, G.-D. Ge, S.-T. Chen, and M.-C. Tang, "The feasibility of envelope-based time reversal," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 1, 63-74, 2011.
    doi:10.1163/156939311793898279

    31. Ge, G.-D., B.-Z. Wang, H.-Y. Huang, and G. Zheng, "Super-resolution characteristics of time-reversed electromagnetic wave," Acta. Phys. Sin., Vol. 58, No. 128249, Dec. 2009 ((in Chinese).

    32. Ge, G.-D., B.-Z. Wang, D. Wang, and D. Zhao, "Ultra-wideband communication based on super-resolution characteristics of microstructured array with far-field time-reversal," Proc. ICIIE, 264-268, Chengdu, China, Jan. 2011.

    33. Carminati, R., M. Nieto-Vesperinas, and J.-J. Greffet, "Reci-procity of evanescent electromagnetic waves," J. Opt. Soc. Am. A, Vol. 15, No. 3, 706-712, Mar. 1998.
    doi:10.1364/JOSAA.15.000706

    34. Carminati, R., J. J. Saenz, J.-J. Greffet, and M. Nieto-vesperinas, "Reciprocity, unitarity, and time-reversal symmetry of the S matrix of fields containing evanescent components," Phys. Rev. A, Vol. 15, No. 3, 012712-1-7, 2000.