Vol. 115
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-03-23
Inverse Modeling in Application for Sequential Filter Tuning
By
Progress In Electromagnetics Research, Vol. 115, 113-129, 2011
Abstract
This paper presents a new method of sequential microwave filter tuning. For filters with R tuning elements (including cavities, couplings and cross-couplings), based on physically measured scattering characteristics in the frequency domain, the Artificial Neural Network (ANN) is used to build inverse models of R sub-filters. Each sub-filter is associated to one tuning element. The sub-filters are obtained by successive opening or shorting of resonators and by removing coupling screws. For each sub-filter, the ANN training vectors are defined as physical reflection characteristics (input vectors) and the corresponding positions of the tuning element, which is detuned, in both directions, from its proper setting (output vectors). In the tuning process, such inverse models are used for calculating the tuning element increments needed for setting the tuning element in the proper position. The tuning experiment, conducted on 8- and 11- cavity filters, has shown the performance of the presented method.
Citation
Jerzy Julian Michalski, "Inverse Modeling in Application for Sequential Filter Tuning," Progress In Electromagnetics Research, Vol. 115, 113-129, 2011.
doi:10.2528/PIER11021103
References

1. Razalli, M. S., A. Ismail, M. A. Mahdi, and M. N. Hamidon, "Novel compact `via-less' ultra-wide band filter utilizing capacitive microstrip patch," Progress In Electromagnetics Research, Vol. 91, 213-227, 2009.
doi:10.2528/PIER09020403

2. Mo, S. G., Z. Y. Yu, and L. Zhang, "Design of triple-mode bandpass filter using improved hexagonal loop resonator," Progress In Electromagnetics Research, Vol. 96, 117-125, 2009.
doi:10.2528/PIER09080304

3. Ye, C. S., Y. K. Su, M. H. Weng, C. Y. Hung, and R. Y. Yang, "Design of the compact parallel-coupled lines wideband bandpass filters using image parameter method," Progress In Electromagnetics Research, Vol. 100, 153-173, 2010.
doi:10.2528/PIER09073002

4. Zhang, L., Z.-Y. Yu, and S.-G. Mo, "Novel planar multimode bandpass filters with radial-line stubs," Progress In Electromagnetics Research, Vol. 101, 33-42, 2010.
doi:10.2528/PIER09121303

5. Huang, J.-Q. and Q.-X. Chu, "Compact UWB band-pass filter utilizing modified composite right/left-handed structure with cross coupling," Progress In Electromagnetics Research, Vol. 107, 179-186, 2010.
doi:10.2528/PIER10070403

6. Chiou, Y.-C., P.-S. Yang, J.-T. Kuo, and C.-Y.Wu, "Transmission zero design graph for dual-mode dual-band filter with periodic stepped-impedance ring resonator," Progress In Electromagnetics Research, Vol. 108, 23-36, 2010.
doi:10.2528/PIER10071608

7. Lopez-Garcia, B., D. V. B. Murthy, and A. Corona-Chavez, "Half mode microwave filters based on epsilon near zero and mu near zero concepts," Progress In Electromagnetics Research, Vol. 113, 379-393, 2011.

8. Vegesna, S. and M. Saed, "Novel compact dual-band bandpass microstrip filter," Progress In Electromagnetics Research B, Vol. 20, 245-262, 2010.
doi:10.2528/PIERB10012210

9. Dishal, M., "Alignment and adjustment of synchronously tuned multiple-resonant-circuit filters," Proc. IRE, Vol. 39, No. 11, 1448-1455, Nov. 1951.
doi:10.1109/JRPROC.1951.273611

10. Atia, A. E. and A. E. Williams, "Measurements of intercavity couplings," IEEE Transactions Microwave Theory and Techniques, Vol. 23, No. 6, 519-522, Jun. 1975.
doi:10.1109/TMTT.1975.1128614

11. Chen, M. H., "Short-circuit tuning method for singly terminated filters," IEEE Transactions Microwave Theory and Techniques, Vol. 25, No. 12, 1032-1036, Dec. 1977.
doi:10.1109/TMTT.1977.1129269

12. Ness, J. B., "A unified approach to the design, measurement, and tuning of coupled-resonator filters," IEEE Transactions Microwave Theory and Techniques, Vol. 46, 343-351, 1998.
doi:10.1109/22.664135

13. Zahirovic, N. and R. R. Mansour, "Sequential tuning of coupled resonator filters using Hilbert transform derived relative group delay," 2008 IEEE MTT-S International Microwave Symposium Digest, 739-742, Jun. 15--20, 2008.

14. Miraftab, V. and R. R. Mansour, "Tuning of microwave filters by extracting human experience using fuzzy logic," 2005 IEEE MTT-S International Microwave Symposium Digest, 4, Jun. 12--17, 2005.

15. Miraftab, V. and R. R. Mansour, "Fully automated RF/microwave filter tuning by extracting human experience using fuzzy controllers," IEEE Trans. on Circuits and Systems, Vol. 55, No. 5, Jun. 2008.

16. Dunsmore, J., "Tuning band pass filters in the time domain," IEEE MTT-S Int. Microwave Symp. Digest, 1351-1354, 1999.

17. Lindner, A., H. Kugler, and E. Biebl, "Manual filter tuning by cloning frequency domain data," 37th European Microwave Conference 2007, 329-331, Sep. 2007.

18. Kabir, H., Y. Wang, M. Yu, and Q.-J. Zhang, "Neural network inverse modeling and applications to microwave filter design," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 4, 867-879, Apr. 2008.
doi:10.1109/TMTT.2008.919078

19. Cameron, R. J., C. M. Kudsia, and R. R. Mansour, Microwave filter for Communication Systems: Fundamentals, Design, and Application, John Wiley & Sons, Inc., 2007.

20. Cameron, R. J., "General coupling matrix synthesis methods for Chebyshev filtering functions," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 4, 433-442, Apr. 1999.
doi:10.1109/22.754877

21. Pepe, G., F.-J. Gortz, and H. Chaloupka, "Sequential tuning of microwave filters using adaptive models and parameter extraction," IEEE Transactions Microwave Theory and Techniques, Vol. 53, No. 1, 22-31, Jan. 2005.
doi:10.1109/TMTT.2004.839342

22. Thal, H. L., "Computer-aided filter alignment and diagnosis," IEEE Transactions on Microwave Theory and Techniques, Vol. 26, No. 12, 958-963, Dec. 1978.
doi:10.1109/TMTT.1978.1129528

23. Meng, M. and K.-L. Wu, "An analytical approach to computer-aided diagnosis and tuning of lossy microwave coupled resonator," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 12, 3188-3195, Dec. 2009.
doi:10.1109/TMTT.2009.2033868

24. Zahirovic, N., R. R. Mansour, and M. Yu, "Scalar measurement-based algorithm for automated filter tuning of integrated Chebyshev tunable filters," IEEE Transactions Microwave Theory and Techniques, Vol. 58, No. 12, 3749-3759, Dec. 2010.

25. Michalski, J., "Artificial neural networks approach in microwave filter tuning," Progress In Electromagnetics Research M, Vol. 13, 173-188, 2010.
doi:10.2528/PIERM10053105

26. Michalski, J., "Artificial neural network algorithm for automated filter tuning with improved efficiency by usage of many golden filters," Proceedings of XVIII International Conference on Microwave, Radar and Wireless Communications MIKON-2010, Vol. 3, 264-266, Lithuania, Vilnius, Jun. 14--16, 2010.

27. Haykin, S., Neural Networks: A Comprehensive Foundation, Prentice Hall, Upper Saddle River, NJ, 1999.