Vol. 114

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Highly Birefringent Four-Hole Fiber for Pressure Sensing

By Daru Chen, Ming-Leung Vincent Tse, Chuang Wu, Hongyan Fu, and Hwa-Yaw Tam
Progress In Electromagnetics Research, Vol. 114, 145-158, 2011


A highly birefringent four-hole fiber (FHF) with a pair of large air holes and a pair of small air holes are proposed for air/hydrostatic pressure sensing. The birefringence of the FHF can be up to 0.01 due to the rectangle-like fiber core surrounded by four air holes. Therefore, a FHF with a length of only several centimeters is required for high-sensitivity pressure sensing based on a Sagnac interferometer. Optical properties of the FHF such as effective index and birefringence are investigated. Pressure sensor based on the FHF depends on the pressure-induced refractive index change or pressure-induced birefringence. The stress distribution of the FHF subjected to an air/hydrostatic pressure is represented. Simulations show that the principal stress component parallel to the slow axis of the of the FHF under the air/hydrostatic pressure is greatly enhanced due to the existence of two large air holes, which consequently results in a high sensitivity of the FHF-based pressure sensor. Relationships between the pressure-induced birefirngence and the radius of the large air hole, the external diameter of the FHF, or the ellipticity of the elliptical FHF are investigated. The polarimetric pressure sensitivity of the FHF can be up to 607 rad/MPa/m.


Daru Chen, Ming-Leung Vincent Tse, Chuang Wu, Hongyan Fu, and Hwa-Yaw Tam, "Highly Birefringent Four-Hole Fiber for Pressure Sensing," Progress In Electromagnetics Research, Vol. 114, 145-158, 2011.


    1. Budiansky, B., D. C. Drucker, G. S. Kino, and J. R. Rice, "Pressure sensitivity of a clad optical fiber," Appl. Opt., Vol. 18, 4085-4088, 1979.

    2. Bock, W. J. and A. W. Domanski, "High hydrostatic pressure effects in highly birefringent optical fibers," J. Lightwave Technol., Vol. 7, 1279-1283, 1989.

    3. Chiang, K. S. and D. Wong, "Hydrostatic pressure induced birefringence in a highly birefringent optical fiber," Electron. Lett., Vol. 26, 1952-1954, 1990.

    4. Chiang, K. S., "Pressure-induced birefringence in a coated highly birefringent optical fiber ," J. Lightwave Technol., Vol. 8, 1850-1855, 1990.

    5. Wang, A., S. He, X. Fang, X. Jin, and J. Lin, "Optical fiber pressure sensor based on photoelasticity and its application," J. Lightwave Technol., Vol. 10, 1466-1472, 1992.

    6. Wolinski, T. R. and W. J. Bock, "Birefringence measurement under hydrostatic pressure in twisted highly birefringent fibers," IEEE Trans. Instrum. Meas., Vol. 44, 708-711, 1995.

    7. Ma, J., W. Tang, and W. Zhou, "Optical-fiber sensor for simultaneous measurement of pressure and temperature: Analysis of cross sensitivity ," Appl. Opt., Vol. 35, 5206-5210, 1996.

    8. Charasse, M. N., M. Turpin, and J. P. Le Pesant, "Dynamic pressure sensing with a side-hole birefringent optical fiber," Opt. Lett., Vol. 16, 1043-1045, 1991.

    9. Clowes, J. R., S. Syngellakis, and M. N. Zervas, "Pressure sensitivity of side-hole optical fiber sensors," IEEE Photon. Technol. Lett., Vol. 10, 857-859, 1998.

    10. Zhao, Y. and F. Ansari, "Instrinsic single-mode fiber-optic pressure sensor," IEEE Photon. Technol. Lett., Vol. 13, 1212-1214, 2001.

    11. Nawrocka, M. S., W. J. Bock, and W. Urbanczyk, "Dynamic high-pressure calibration of the fiber-optic sensor based on birefringent silde-hole fibers," J. Sens., Vol. 5, 1011-1018, 2005.

    12. Frazao, O., S. O. Silva, J. M. Baptista, J. L. Santos, G. Statkiewicz-Barabach, W. Urbanczyk, and J. Wojcik, "Simultaneous measurement of multiparameters using a Sagnac interferometer with polarization maintaining side-hole fiber ," Appl. Opt., Vol. 47, 4841-4848, 2008.

    13. Statkiewicz, G., T. Martynkien, and W. Urbanczyk, "Measurements of modal birefringence and polarimetric sensitivity of the birefringent holey fiber to hydrostatic pressure and strain ," Opt. Communications, Vol. 241, 339-348, 2004.

    14. Szpulak, M., T. Martynkien, and W. Urbanczyk, "Effects of hydrostatic pressure on phase and group modal birefringence in microstructured holey fibers," Appl. Opt., Vol. 43, 4739-4744, 2004.

    15. MacPherson, W. N., E. J. Rigg, J. D. C. Jones, V. V. Ravi Kanth Kumar, J. C. Knight, and P. St. J. Russell, "Finite-element analysis and experimental results for a microstructured fiber with enhance hydrostatic pressure sensitivity," J. Lightwave Technol., Vol. 23, 1227-1231, 2005.

    16. Bock, W. J., J. Chen, and W. Urbanczyk, "A photonic crystal fiber sensor for pressure measurement," IEEE Trans. Instrum. Meas., Vol. 55, 1119-1123, 2006.

    17. Martynkien, T., , G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpot, "Measurements of polarimetric sensitivity to temperature in birefringent holey fibres ," Meas. Sci. Technol., Vol. 18, 3055-3060, 2007.

    18. Shinde, Y. S. and H. K. Gahir, "Dynamic pressure sensing study using photonic crystal fiber: application to tsunami sensing," IEEE Photon. Technol. Lett., Vol. 20, 279-281, 2008.

    19. Fu, H. Y., H. Y. Tam, L. Y. Shao, X. Dong, P. K. A. Wai, C. Lu, and S. K. Khijwania, "Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer," Appl. Opt., Vol. 47, 2835-2839, 2008.

    20. Oliveira, R. E. P. de, C. J. S. de Matos, J. G. Hayashi, and C. M. B. Cordeiro, "Pressure sensing based on nonconventional air-guiding transmission windows in hollow-core photonic crystal fibers," J. Lightwave Technol., Vol. 27, 1605-1609, 2009.

    21. Szczurowski, M. K., T. Martynkien, G. Statkiewicz-Barabach, W. Urbanczyk, and D. J. Webb, "Measurements of polarimentric sensitivity to hydrostatic pressure, strain and temperature in birefringent dual-core microstructured polymer fiber," Opt. Express, Vol. 18, 12076-12087, 2010.

    22. Martynkien, T., G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Skorupski, M. Makara, J. Klimek, K. Poturaj, W.Urbanczyk, T. Nasilowski, F. Berghmanst, and H. Thienpont, "Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure," Opt. Express, Vol. 18, 15113-15121, 2010.

    23. Ortigosa-Blanch, A., J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russel, "Highly birefringent photonic crystal fibers," Opt. Lett., Vol. 25, 1325-1327, 2000.

    24. Chau, Y.-F., H.-H. Yeh, and D. P. Tsai, "Significantly enhanced birefringence of photonic crystal fiber using rotational binary unit cell in fiber cladding," Jpn. J. Appl. Phys., Vol. 46, 1048-1051, 2007.

    25. Chen, D. and L. Shen, "Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss," IEEE Photon. Technol. Lett., Vol. 19, 185-187, 2007.

    26. Chen, D. and H. Chen, "Highly birefringent low-loss terahertz waveguide: Elliptical polymer tube," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 11-12, 1553-1562, 2010.

    27. Wu, J.-J., D. Chen, K.-L. Liao, T.-J. Yang, and W.-L. Ouyang, "The optical properties of bragg fiber with a fiber core of 2-dimension elliptical-hole photonic crystal structure," Progress In Electromagnetics Research Letters, Vol. 10, 87-95, 2009.

    28. Chau, Y.-F., C.-Y. Liu, H.-H. Yeh, and D. P. Tsai, "A comparative study of high birefringence and low confinement loss photonic crystal ¯ber employing elliptical air holes in fiber cladding with tetragonal lattice," Progress In Electromagnetics Research B, Vol. 22, 39-52, 2010.

    29. Chen, D., M.-L. V. Tse, and H. Y. Tam, "Optical properties of photonic crystal ¯bers with a fiber core of arrays of subwavelength circular air holes: birefringence and dispersion," Progress In Electromagnetics Research, Vol. 105, 687-697, 2001.

    30. Ferrando, A., E. Silvestre, P. Andres, J. Miret, and M. Andres, "Designing the properties of dispersion-flattened photonic crystal fibers," Opt. Express, Vol. 9, 687-697, 2001.

    31. Huttunen, A. and P. Torma, "Optimization of dual-core and microstructure fiber geometries for dispersion compensation and large mode area," Opt. Express, Vol. 13, 627-635, 2005.

    32. Nozhat, N. and N. Granpayeh, "Specialty fibers designed by photonic crystals," Progress In Electromagnetics Research, Vol. 99, 225-244, 2009.

    33. Agrawal, A., N. Kejalakshmy, J. Chen, B. M. A. Rahman, and K. T. V. Grattan , "Golden spiral photonic crystal fiber: Polarization and dispersion properties," Opt. Lett., Vol. 33, 2716-2718, 2008.

    34. Agrawal, A., N. Kejalakshmy, B. M. A. Rahman, and K. T. V. Grattan, "Polarization and dispersion properties of elliptical hole golden spiral photonic crystal fiber," Appl. Phys. B, Vol. 99, 717-726, 2010.

    35. Folkenberg, J. R., M. D. Nielsen, and C. Jakobsen, "Broadband single-polarization photonic crystal fiber," Opt. Lett., Vol. 30, 1446-1448, 2005.

    36. Zhang, F., M. Zhang, X. Liu, and P. Ye, "Design of wideband single-polarization single-mode photonic crystal fiber," J. Lightwave Technol., Vol. 25, 1184-1189, 2007.

    37. Lin, A., Z. Zheng, Z. Li, T. Zhou, and J. Cheng, "Ultra-wideband single-polarization single-mode, high nonlinearity photoniccrystal fiber," Opt. Communications, Vol. 241, 339-348, 2009.

    38. Knight, J. C. and D. V. Skryabin, "Nonlinear waveguide optics and photonic crystal fibers," Opt. Express, Vol. 15, 15365-15376, 2007.

    39. Mortensen, N. A., M. D. Nielsen, J. R. Folkenberg, A. Petersson, and H. R. Simonsen, "Improved large-mode-area endlessly single-mode photonic crystal fibers," Opt. Lett., Vol. 28, 393-395, 2003.

    40. Limpert, J., T. Schreiber, S. Nolte, H. Zellmer, T. Tunnermann, R. Iliew, F. Lederer, J. Broeng, G. Vienne, A. Petersson, and C. Jakobsen, "High-power air-clad large-mode-area photonic crystal fiber laser," Opt. Express, Vol. 11, 818-823, 2003.

    41. Li, J., J. Wang, and F. Jing, "Improvement of coiling mode to suppress higher-order-modes by considering mode coupling for large-mode-area fiber laser," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8-9, 1113-1124, 2010.

    42. Saitoh, K. and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on finite element scheme: Application to photonic crystal fibers," IEEE J. Quantum Electron., Vol. 38, 927-933, 2002.

    43. Wu, C., B. O. Guan, Z. Wang, and X. Feng, "Characterization of pressure response of Bragg gratings in grapefruit microstructured fibers," J. Lightwave Technol., Vol. 28, 1392-1397, 2010.