Vol. 114
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-04-04
A Four-Parameter m -Profile Model for the Evaporation Duct Estimation from Radar Clutter
By
Progress In Electromagnetics Research, Vol. 114, 353-368, 2011
Abstract
A new four-parameter modified refractivity profile (M-profile) model for the evaporation duct is introduced in this paper. In the estimation of radio refractivity structure from sea clutters, a parametric M-profile model is normally employed. The conventional M-profile model for evaporation ducts is the one-parameter log linear model, which has some potential disadvantages in describing the observed M-profiles which would result in rough results of evaporation duct estimation. Based on this model, three new parameters are introduced and a four-parameter M-profile model is proposed here. This model has the ability to (a) more accurately match real-world M-profiles, (b) well replicate the observed clutter field, and (c) show clutter power or path loss sensitivity to each model parameter. All these abilities are necessary for robust refractivity estimations. The performance of this model is tested and validated through the estimation for two truly measured M-profiles.
Citation
Jin-Peng Zhang, Zhen-Sen Wu, Qing-Lin Zhu, and Bo Wang, "A Four-Parameter m -Profile Model for the Evaporation Duct Estimation from Radar Clutter," Progress In Electromagnetics Research, Vol. 114, 353-368, 2011.
doi:10.2528/PIER11012204
References

1. Anderson, K. D., "Radar measurements at 16.5 GHz in the oceanic evaporation duct," IEEE Trans. Antennas Propag., Vol. 37, No. 1, 100-106, 1989.
doi:10.1109/8.192171

2. Woods, G., A. Ruxton, C. Huddlestone-Holmes, and G. Gigan, "High-capacity, long-range, over ocean microwave link using the evaporation duct," IEEE J. Ocean. Eng., Vol. 34, No. 3, 323-329, 2009.
doi:10.1109/JOE.2009.2020851

3. Hitney, H. V. and R. Vieth, "Statistical assessment of evaporation duct propagation," IEEE Trans. Antennas Propag., Vol. 38, No. 6, 794-799, 1990.
doi:10.1109/8.55574

4. Paulus, R. A., "Evaporation duct effects on sea clutter," IEEE Trans. Antennas Propag., Vol. 38, No. 11, 1765-1771, 1990.
doi:10.1109/8.102737

5. Meng, Y. S., Y. H. Lee, and B. C. Ng, "Further study of rainfall effect on VHF forested radio-wave propagation with four-layered model," Progress In Electromagnetics Research, Vol. 99, 149-161, 2009.
doi:10.2528/PIER09102201

6. Alexopoulos, A., "Effect of atmospheric propagation in RCS predictions," Progress In Electromagnetics Research, Vol. 101, 277-290, 2010.
doi:10.2528/PIER09121509

7. Babin, S. M., G. S. Young, and J. A. Carton, "A new model of the oceanic evaporation duct," J. Appl. Meteorology, Vol. 36, 193-204, 1997.
doi:10.1175/1520-0450(1997)036<0193:ANMOTO>2.0.CO;2

8. Rogers, L. T., C. P. Hattan, and J. K. Stapleton, "Estimating evaporation duct heights from radar sea echo," Radio Sci., Vol. 35, No. 4, 955-966, 2000.
doi:10.1029/1999RS002275

9. Gerstoft, P., L. T. Rogers, J. L. Krolik, and W. S. Hodgkiss, "Inversion for refractivity parameters from radar sea clutter,", Vol. 38, No. 3, 8053, 2003.
doi:10.1029/2002RS002640

10. Paulus, R. A., "Specification for environmental measurements to assess radar sensors,", Tech. Rep. 1685, Naval Ocean Systems Center, San Diego, CA, Nov. 1989.

11. Yardim, C., P. Gerstoft, and W. S. Hodgkiss, "Sensitivity analysis and performance estimation of refractivity from clutter techniques," Radio Sci., Vol. 44, 1008, 2009.

12. Jeske, H., "State and limits of prediction methods of radar wave propagation conditions over the sea ," Modern Topics in Microwave Propagation and Air-Sea Interaction, A. Zancla (ed.), D. Reidel Publishing, 130-148, 1973.

13. Goldhirsh, J. and G. D. Dockery, "Measurement resolution criteria for assessment of coastal ducting," Proc. 9th Int. Conf. Antennas and Propagation, 317-322, 1995.

14. Gerstoft, P., W. S. Hodgkiss, L. T. Rogers, and M. Jablecki, "Probability distribution of low altitude propagation loss from radar sea clutter data," Radio Sci, Vol. 39, 6006, 2004.

15. Paulus, R. A. and K. D. Anderson, "Application of an evaporation duct climatology in the littoral," Battle Space Atmospherics and Cloud Impact on Military Oper. Conf., Fort Collins, CO, 1990.

16. Douvenot, R., V. Fabbro, C. Bourlier, J. Saillard, H. Fuchs, H. Essen, et al. "Retrieve the evaporation duct height by least-squares support vector machine algorithm," J. Appl. Remote Sens., Vol. 3, 1-15, 2009.

17. Ivanov, V. K., V. N. Shalyapin, and Y. V. Levadny, "Microwave scattering by tropospheric fluctuations in an evaporation duct," Radiophysics and Quantum Electronics, Vol. 52, No. 4, 277-268, 2009.
doi:10.1007/s11141-009-9133-z

18. Mabey, D. L., "Variability of refractivity in the surface layer,", M.S. Thesis-Naval Postgraduate School, Monterey, CA, 2002.
doi:

19. Bocharov, V. G., A. V. Kukushkin, V. G. Sinitsyn, and I. M. Fuks, "Propagation of radio waves in tropospheric evaporation ducts,", Inst. Radiophys. Electron., National Acad. Sci., No. 126, Kharkov, Ukraine, Preprint, 1979.

20. Wu, F., "The research of parabolic equation in the troposphere,", M.S. Thesis, School of Science, Wuhan University of Technology, Wu Han, Hubei, 2008 (in Chinese).

21. Wang, X.-M., "A study on the atmospheric duct over ocean and its prediction,", M.S. Thesis, Remote Sensing College-Nanjing University of Information Science and Technology, Nanjing, Jiangsu, 2007 (in Chinese).

22. Wang, B., Z.-S. Wu, Z. Zhao, and H.-G. Wang, "Retrieving evaporation duct heights from radar sea clutter using particle swarm optimization (PSO) algorithm," Progress In Electromagnetics Research M, Vol. 9, 79-91, 2009.
doi:10.2528/PIERM09090403

23. Wu, Z.-S., J.-P. Zhang, L.-X. Guo, and P. Zhou, "An improved two-scale model with volume scattering for the dynamic ocean surface," Progress In Electromagnetics Research, Vol. 89, 39-56, 2009.
doi:10.2528/PIER08111803

24. Liang, D., P. Xu, L. Tsang, Z. Gui, and K.-S. Chen, "Electromagnetic scattering by rough surfaces with large heights and slopes with applications to microwave remote sensing of rough surface over layered media," Progress In Electromagnetics Research, Vol. 95, 199-218, 2009.
doi:10.2528/PIER09071413

25. Wang, A.-Q., L.-X. Guo, and C. Chai, "Numerical simulations of electromagnetic scattering from 2D rough surface: Geometric modeling by nurbs surface ," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 10, 1315-1328, 2010.
doi:10.1163/156939310791958662

26. Zhang, L., F. Yang, and A. Z. Elsherbeni, "On the use of random variables in particle swarm optimizations: A comparative study of Gaussian and uniform distributions," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5-6, 711-721, 2009.
doi:10.1163/156939309788019787