Vol. 113

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2011-01-27

On the Fundamental Equations of Electromagnetism in Finslerian Spacetimes

By Nicoleta Voicu
Progress In Electromagnetics Research, Vol. 113, 83-102, 2011
doi:10.2528/PIER10122108

Abstract

In spaces with Finslerian geometry, the metric tensor depends on the directional variable, which leads to a dependence on this variable of the electromagnetic tensor and of the 4-potential. In this paper, we investigate some of the consequences of this fact, regarding the basic notions and equations of classical electromagnetic field theory.

Citation


Nicoleta Voicu, "On the Fundamental Equations of Electromagnetism in Finslerian Spacetimes," Progress In Electromagnetics Research, Vol. 113, 83-102, 2011.
doi:10.2528/PIER10122108
http://jpier.org/PIER/pier.php?paper=10122108

References


    1. Asanov, G. S., Finsler Geometry, Relativity and Gauge Theories, Reidel, Dordrecht, 1985.

    2. Balan, V. and P. C. Stavrinos, "Finslerian (α,β)-metrics in weak gravitational models," Finsler and Lagrange Geometries, M. Anastasiei and P. L. Antonelli, Eds., 259-268, Kluwer Acad Publishers, 2003.

    3. Brinzei (Voicu), N. and S. Siparov, Equations of Electromagnetism in Some Special Anisotropic Spaces, Dec. 2008.

    4. Bogoslovsky, G. Y., "A viable model of locally anisotropic space-time and the Finslerian generalization of the relativity theory," Fortschr. Phys., Vol. 42, No. 2, 143-193, 1994.
    doi:10.1002/prop.2190420203

    5. Bogoslovsky, G. Y. and H. F. Goenner, "Concerning the generalized Lorentz symmetry and the generalization of the Dirac equation ," Phys. Lett. A, Vol. 323, 40-47, 2004.
    doi:10.1016/j.physleta.2004.01.040

    6. Bao, D., S. S. Chern, and Z. Shen, An Introduction to Riemann-Finsler Geometry, (Graduate Texts in Mathematics, 200) , Springer Verlag, 2000.

    7. Dahl, M., "Electromagnetic Gaussian beams and Riemannian geometry ," Progress In Electromagnetics Research, Vol. 60, 265-291, 2006.
    doi:10.2528/PIER05122802

    8. Ivancevic, V. G. and T. T. Ivancevic, Applied Differential Geometry. A Modern Introduction, WSP, 2007.

    9. Kachalov, A. P., "Quasijets in anisotropic media, Finsler geometry, and Fermi coordinates," Journal of Math. Sciences, Vol. 142, No. 6, 2546-2558, 2007.
    doi:10.1007/s10958-007-0142-1

    10. Miron, R. and M. Anastasiei, The Geometry of Lagrange Spaces: Theory and Applications, FTPH, No. 59, Kluwer Acad. Publ., 1994.

    11. Landau, L. D. and E. M. Lifschiz, Field Theory, 8th Ed., Fizmatlit, Moscow, 2006.

    12. Miron, R., R. Rosca, M. Anastasiei, and K. Buchner, "New aspects in Lagrangian relativity," Found. of Phys. Lett., Vol. 2, No. 5, 141-171, 1992.
    doi:10.1007/BF00682812

    13. Miron, R. and M. Radivoiovici-Tatoiu, "A Lagrangian theory of electromagnetism," Seminarul de Mecanica, 1-55, Timisoara, 1988.

    14. Miron, R., The Geometry of Ingarden Spaces, Vol. 54, No. 2, 131-147, Rep. on Math. Phys., 2007.

    15. Rutz, S., "A Finsler generalisation of Einstein's vacuum field equations," General Relativity and Gravitation, Vol. 25, No. 11, 1139-1158, 1993.
    doi:10.1007/BF00763757

    16. Siparov, S., "On the interpretation of the classical GRT tests and cosmological constant in anisotropic geometrodynamics ,", 2009.

    17. Shen, Z., Lectures on Finsler Geometry, World Scientific, 2001.

    18. Udriste, C. and V. Balan, Differential Operators and Convexity on Vector Bundles, Endowed with (h; v)-metrics, Section I, Vol. 43, No. 1, 37{50, An. St. Univ. ``AL.I. Cuza", 1997.

    19. Vacaru, S., P. Stavrinos, E. Gaburov, and D. Gonta, Clifford and Riemann Finsler Structures in Geometric Mechanics and Gravity, Geometry Balkan Press, Bucharest, 2006.

    20. Voicu, N. and S. Siparov, "A new approach to electromagnetism in anisotropic spaces," BSG Proc., Vol. 17, 250-260, 2010.

    21. Watanabe, T. and M. Hayashi, General Relativity with Torsion, arXiv: gr -qc/0409029.

    22. Li, X. and Z. Chang, "Towards a gravitation theory in Berwald-Finsler space," Chinese Phys. C, Vol. 34, 28, 2010.
    doi:10.1088/1674-1137/34/11/002

    23. Von Brzeski, J. G. and V. von Brzeski, "Topological wave-length shifts [electromagnetic field in Lobachevskian geometry]," Progress In Electromagnetics Research, Vol. 39, 281-298, 2003.
    doi:10.2528/PIER02112101

    24. Carcione, J. M., "Simulation of electromagnetic diffusion in anisotropic media," Progress In Electromagnetics Research B, Vol. 26, 425-450, 2010.
    doi:10.2528/PIERB10100607

    25. Cheng, X., H. Chen, B.-I. Wu, and J. A. Kong, "Cloak for bianisotropic and moving media," Progress In Electromagnetics Research, Vol. 89, 199-212, 2009.
    doi:10.2528/PIER08120803

    26. Gratus, J. and R. W. Tucker, "Covariant constitutive relations, Landau damping and non-stationary inhomogeneous plasmas," Progress In Electromagnetics Research M, Vol. 13, 145-156, 2010.
    doi:10.2528/PIERM10051310

    27. Lindell, I. V., "Class of electromagnetic sq-media," Progress In Electromagnetics Research, Vol. 110, 371-382, 2010.
    doi:10.2528/PIER10100601

    28. Lindell, I. V., "Electromagnetic wave equation in differential-form representation ," Progress In Electromagnetics Research, Vol. 54, 321-333, 2005.
    doi:10.2528/PIER05021002

    29. Slob, E. C. and K. Wapenaar, "Retrieving the Green's function from cross correlation in a bianisotropic medium," Progress In Electromagnetics Research, Vol. 93, 255-274, 2009.
    doi:10.2528/PIER09041004