Vol. 113
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-02-08
Electromagnetic Design and Analysis of a Novel Magnetic-Gear-Integrated Wind Power Generator Using Time-Stepping Finite Element Method
By
Progress In Electromagnetics Research, Vol. 113, 351-367, 2011
Abstract
This paper presents a novel permanent-magnet (PM) machine for wind power generation. In order to achieve high power/torque density as well as get rid of the nuisances aroused by the mechanical gearbox, a coaxial magnetic gear (CMG) is engaged. Different from the existing integrated machine in which armature windings are deployed in the inner bore of the CMG as an individual part, stator windings are directly inserted among the slots between the ferromagnetic segments in this proposed machine. Thus, it can offer several merits, such as simpler mechanical structure, better utilization of PM materials and lower manufacturing cost. Moreover, by artfully designing the connection of the armature windings, the electromagnetic coupling between the windings and the outer rotor PMs can be dramatically decreased, and the electromechanical energy conversion can be achieved by the field interaction between the inner rotor PMs and the armature windings. This machine adopts an outer-rotor topology, for compact design, the wind blades are directly mounted on the outer rotor of the machine, while the fairing is equipped on the front end of the stator. The design details and operating principle are elaborated. By using the time-stepping finite element method (TSFEM), the electromagnetic characteristics of the proposed machine are analyzed. The results verify the validity of the proposed machine.
Citation
Linni Jian, Guoqing Xu, Yu Gong, Jianjian Song, Jianing Liang, and Ming Chang, "Electromagnetic Design and Analysis of a Novel Magnetic-Gear-Integrated Wind Power Generator Using Time-Stepping Finite Element Method," Progress In Electromagnetics Research, Vol. 113, 351-367, 2011.
doi:10.2528/PIER10121603
References

1. Negra, N., O. Holmstrom, B. Birgitte, and S. Poul, "Windfarm generation assessment for reliability analysis of power systems," Wind Engineering, Vol. 31, No. 6, 383-400, 2007.
doi:10.1260/030952407784079708

2. Grauers, A., "Efficiency of three wind energy generator systems," IEEE Trans. Energy Conversion, Vol. 11, No. 3, 650-657, 1996.
doi:10.1109/60.537038

3. Muller, S., "Doubly fed induction generator system for wind turbines," IEEE Ind. Appl. Magazine, Vol. 8, No. 3, 26-33, 2002.
doi:10.1109/2943.999610

4. Torrey, D., "Switched reluctance generators and their control," IEEE Trans. Ind. Electron., Vol. 49, No. 1, 3-13, 2002.
doi:10.1109/41.982243

5. Fan, Y., K. T. Chau, and M. Cheng, "A new three-phase doubly salient permanent magnet machine for wind power generation," IEEE Trans. Ind. Appl. Magazine, Vol. 42, No. 1, 53-59, 2006.

6. Chau, K. T., Y. Li, J. Jiang, and S. Niu, "Design and control of a PM brushless hybrid generator for wind power application," IEEE Trans. Magn., Vol. 42, No. 10, 3497-3499, 2006.
doi:10.1109/TMAG.2006.879436

7. Niu, S., K. T. Chau, J. Jiang, and C. Liu, "Design and control of a new double-stator cup-rotor permanent-magnet machine for wind power generation," IEEE Trans. Magn., Vol. 43, No. 6, 2501-2503, 2007.
doi:10.1109/TMAG.2007.893713

8. Chen, J., C. V. Nayar, and L. Xu, "Design and finite-element analysis of an outer-rotor permanent magnet generator for directly coupled wind turbines," IEEE Trans. Magn., Vol. 36, No. 5, 3802-3809, 2000.
doi:10.1109/20.908378

9. Atallah, K., S. Calverley, and D. Howe, "Design, analysis and realization of a high-performance magnetic gear," IEE Proc. Electric Power Appl., Vol. 151, No. 2, 135-143, 2004.
doi:10.1049/ip-epa:20040224

10. Jian, L. and K.-T. Chau, "Analytical calculation of magnetic field distribution in coaxial magnetic gears," Progress In Eletromagnetics Research, Vol. 92, 1-16, 2009.
doi:10.2528/PIER09032301

11. Jian, L. and K. T. Chau, "A coaxial magnetic gear with halbach permanent-magnet arrays," IEEE Trans. Energy Conversion, Vol. 25, No. 2, 319-328, 2010.
doi:10.1109/TEC.2010.2046997

12. Jian, L., K. T. Chau, W. Li, and J. Li, "A novel coaxial magnetic gear using bulk HTS for industrial applications," IEEE Trans. Appl. Superconduc., Vol. 20, No. 3, 981-984, 2010.
doi:10.1109/TASC.2010.2040609

13. Chau, K. T., D. Zhang, J. Jiang, C. Liu, and Y. Zhang, "Design of a magnetic-geared outer-rotor permanent-magnetic brushless motor for electric vehicles," IEEE Trans. Magn., Vol. 43, No. 6, 2504-2506, 2007.
doi:10.1109/TMAG.2007.893714

14. Jian, L. and K.-T. Chau, "Design and analysis of a magnetic-geared electronic-continuously variable transmission system using finite element method," Progress In Eletromagnetics Research, Vol. 107, 47-61, 2010.
doi:10.2528/PIER10062806

15. Jian, L., K. T. Chau, and J. Jiang, "A magnetic-geared outer-rotor permanent-magnet brushless machine for wind power generation," IEEE Trans. Ind. Appl., Vol. 45, No. 3, 954-962, 2009.
doi:10.1109/TIA.2009.2018974

16. Faiz, J. and B. M. Ebrahimi, "Mixed fault diagnosis in three-phase squirrel-cage induction motor using analysis of air-gap magnetic field," Progress In Eletromagnetics Research, Vol. 64, 239-255, 2006.
doi:10.2528/PIER06080201

17. Vaseghi, B., N. Takorabet, and F. Meibody-Tabar, "Transient finite element analysis of induction machines with stator winding turn fault," Progress In Eletromagnetics Research, Vol. 95, 1-18, 2009.
doi:10.2528/PIER09052004

18. Faiz, J., B. M. Ebrahimi, and M. B. B. Sharifian, "Time stepping finite element analysis of broken bars fault in a three-phase squirrel-cage induction motor," Progress In Eletromagnetics Research, Vol. 68, 53-70, 2007.
doi:10.2528/PIER06080903

19. Chari, M. V. K., G. Bedrosian, J. D'Angelo, A. Konrad, G. M. Cotzas, and M. R. Shah, "Electromagnetic field analysis for electrical machine design," Progress In Eletromagnetics Research, Vol. 04, 159-211, 1991.

20. Touati, S., R. Ibtiouen, O. Touhami, and A. Djerdir, "Experimental investigation and optimization of permanent magnet motor based on coupling boundary element method with permeances network," Progress In Eletromagnetics Research, Vol. 111, 71-90, 2011.
doi:10.2528/PIER10092303

21. Lecointe, J.-P., B. Cassoret, and J. F. Brudny, "Distinction of toothing and saturation effects on magnetic noise of induction motors," Progress In Eletromagnetics Research, Vol. 112, 125-137, 2011.

22. Ravaud, R. and G. Lemarquand, "Comparsion of the coulombian and amperian current models for calculating the magnetic field produced by radially magnetized arc-shaped permanent magnets," Progress In Eletromagnetics Research, Vol. 95, 309-327, 2009.

23. Tian, J., Z.-Q. Lv, X.-W. Shi, L. Xu, and F. Wei, "An efficient approach for multiforntal algorithm to solve non-positive-definite finite element equations in electromagnetic problems," Progress In Eletromagnetics Research, Vol. 95, 121-133, 2009.
doi:10.2528/PIER09070207

24. Ping, X. W. and T.-J. Cui, "The factorized sparse approximate inverse preconditioned conjugate gradient algorithm for finite element analysis of scatering problems," Progress In Eletromagnetics Research, Vol. 98, 15-31, 2009.
doi:10.2528/PIER09071703

25. Chen, J. and Q. H. Liu, "A non-spurious vector spectral element method for maxwell's equations," Progress In Eletromagnetics Research, Vol. 96, 205-215, 2009.
doi:10.2528/PIER09082705

26. Chau, Y.-F., H.-H. Yeh, and D. P. Tsai, "A new type of optical antenna: plasmonics nanoshell bowtie antenna with dielectric hole," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 11-12, 1621-1632, 2010.
doi:10.1163/156939310792149588

27. Khalilpour, J. and M. Hakkak, "Controllable waveguide bandstop filter using S-shaped ring resonators," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 5-6, 587-596, 2010.
doi:10.1163/156939310791036458