Vol. 112

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2010-12-23

The Diagonal Tensor Approximation (Dta) for Objects in a Non-Canonical Inhomogeneous Background

By Mengqing Yuan and Qing Huo Liu
Progress In Electromagnetics Research, Vol. 112, 1-21, 2011
doi:10.2528/PIER10110804

Abstract

A non-canonical inhomogeneous background medium is one whose Green's function cannot be obtained by an analytical method. Electromagnetic scattering from objects embedded in a non-canonical inhomogeneous background medium is very challenging because of the computational complexity with the calculation of its Green's function and the multiple scattering between objects and the background. This work applies the Diagonal Tensor Approximation (DTA) to calculate the scattering from arbitrary objects in a noncanonical inhomogeneous background. Previously, the DTA has only been applied to a canonical background such as a homogeneous or layered background media. This approach employs a numerical method to obtain all Green's functions required in the calculation; an accurate DTA is used to calculate the scattering properties. In order to reduce the large number of simulations, we employ the symmetry and reciprocity in the Green's function calculation. Furthermore, considering that most realistic imaging measurements are made through a voltage probe usually represented by a wave port, we develop a method to convert the scattered field on the probe (the antenna) to the measured wave port voltage. Numerical results show that this method can obtain accurate scattering characteristics from arbitrary objects in a non-canonical inhomogeneous background medium in a microwave imaging system.

Citation


Mengqing Yuan and Qing Huo Liu, "The Diagonal Tensor Approximation (Dta) for Objects in a Non-Canonical Inhomogeneous Background," Progress In Electromagnetics Research, Vol. 112, 1-21, 2011.
doi:10.2528/PIER10110804
http://jpier.org/PIER/pier.php?paper=10110804

References


    1. Harrington, R. F., Field Computation by Moment Method, R. E. Krieger, Editor, Malabar, FL, 1968.

    2. Born, M. and E. Wolf, Principles of Optics, Pergamon, New York, 1980.

    3. Habashy, T. M., R. W. Groom, and B. R. Spies, "Beyond the born and Rytov approximations. A nonlinear approach to electromagnetic scattering," J. Geophys. Res., Vol. 98, 1759-1775, 1993.
    doi:10.1029/92JB02324

    4. C., Torres-Verdin and T. M. Habashy, "Rapid 2.5-D forward modeling and inversion via a new nonlinear scattering approximation," Radio Sci., Vol. 29, 1051-1079, 1994.
    doi:10.1029/94RS00974

    5. Zhang, M. S. and S. Fang, "Three-dimensinal quasi-linear electromagnetic inversion," Radio Sci., Vol. 31, 741-754, 1996.
    doi:10.1029/96RS00719

    6. Zhang, M. S. and S. Fang, "Quasi-linear approximation in 3-D electromagnetic modeling," Geophysics, Vol. 61, 646-665, 1996.
    doi:10.1190/1.1443994

    7. Zhang, M. S. and S. Fang, "Quasi-linear series in three-dimensinal electromagnetic modeling," Radio Sci., Vol. 32, 2167-2188, 1997.
    doi:10.1029/97RS00050

    8. Song, L. P. and Q. H. Liu, "Fast three-dimensional electromagnetic nonlinear inversion in layered media with a novel scattering approximation," Inverse Problems, Vol. 20, 171-194, 2004.
    doi:10.1088/0266-5611/20/6/S11

    9. Song, L.-P. and Q. H. Liu, "A new approximation to three-dimensional electromagnetic scattering," IEEE Geosci. Remote Sensing Lett., Vol. 2, No. 2, 238-242, April 2005.
    doi:10.1109/LGRS.2005.846836

    10. Zhang, Z. Q. and Q. H. Liu, "Two nonlinear inverse methods for electromagnetic induction measurements," IEEE Trans. Geosci. Remote Sensing, Vol. 39, No. 6, 1331-1339, June 2001.
    doi:10.1109/36.927456

    11. Cui, T. J., W. C. Chew, A. A. Alaeddin, and Y. H. Zhang, "Fast forward solvers for the low-frequency detection of buried dielectric objects," IEEE Trans. Geosci. Remote Sensing, Vol. 41, 2026-2036, 2003.

    12. Miller, E. L. and A. S. Willsky, "Wavelet-based methods for the nonlinear inverse scattering problem using the extended born approximation," Radio Sci., Vol. 31, 51-65, 1996.
    doi:10.1029/95RS03130

    13. Tseng, H. W., K. H. Lee, and A. Becker, "3D interpretation of electromagnetic data using a modified extended Born approximation," Geophysics, Vol. 68, 127-137, 2003.
    doi:10.1190/1.1543200

    14. Liu, Q. H., Z. Q. Zhang, T. T. Wang, J. A. Bryan, G. A. Ybarra, L. W. Nolte, and W. T. Joines, "Active microwave imaging I: 2-D forwardand inverse scattering methods," IEEE Trans. Microwave Theory Tech., Vol. 50, 123-133, January 2002.

    15. Yu, C., M. Q. Yuan, J. Stang, E. Bresslour, R. T. George, G. A. Ybarra, W. T. Joines, and Q. H. Liu, "Active microwave imaging II: 3-D system prototype and image reconstruction from experimental data," IEEE Trans. Microwave Theory Tech., Vol. 56, No. 4, 991-1000, 2008.
    doi:10.1109/TMTT.2008.919661

    16. Li, F., Li, F., Q. H. Liu, and L.-P. Song, "Three-dimensional reconstruction of objects buried in layered media using Born and distorted Born iterative methods," IEEE Geosci. Remote Sensing Lett., Vol. 1, No. 2, 107-111, 2004.
    doi:10.1109/LGRS.2004.826562

    17. Abubakar, A., P. M. van den Berg, and J. T. Fokkema, "Towards non-linear inversion for characterization of time-lapse phenomena through numerical modeling," Geophys. Prospect., Vol. 51, 285-293, 2003.
    doi:10.1046/j.1365-2478.2003.00369.x

    18. Yuan, M. Q., C. Yu., J. P. Stang, R. T. George, G. A. Ybarra, W. T. Joines, and Q. H. Liu, W. T. Joines, and Q. H. Liu, "Experiments and simulations of an antenna array for biomedical microwave imaging applications," URSI Meeting, San Diego, CA, July 2008.

    19. Yu, C., M. Q. Yuan, J. P. Stang, J. E. Bresslour, R. T. George, G. A. Ybarra, W. T. Joines, and Q. H. Liu, "Active microwave imaging II: 3-D system prototype and image reconstruction from experimental data," IEEE Trans. Microwave Theory Tech., Vol. 56, No. 1, 991-1000, 2008.

    20. Yu, C., M. Q. Yuan, and Q. H. Liu, "Reconstruction of 3D objects from multi-freqiency experimental data with a fast DBIM-BCG method," Inverse Problems , Vol. 25, Feb. 2009.

    21. Gelius, L.-J., "Electromagnetic scattering approximations revisited," Progress In Electromagnetics Research, Vol. 76, 75-94, 2007.
    doi:10.2528/PIER07062501

    22. Yu, C., M. Q. Yuan, Y. Zhang, J. Stang, R. T. George, G. A. Ybarra, W. T. Joines, and Q. H. Liu, "Microwave imaging in layered media: 3-D image reconstruction from experimental data," IEEE Trans. Antennas Propagat., Vol. 58, No. 2, February 2010.

    23. Hernondez-Lopez, M. A. and M. Quintillan-Gonzalez, "Coupling and footprint numerical features for a bow-tie antenna array," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 6, 779-794, 2005.
    doi:10.1163/1569393054069037

    24. Guo, B., Y. Wang, J. Li, P. Stoica, and R. Wu, "Microwave imaging via adaptive beamforming methods for breast cancer detection," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 1, 53-63, 2006.
    doi:10.1163/156939306775777350

    25. Yu, J., M. Yuan, and Q. H. Liu, "A wideband half oval patch antenna for breast imaging," Progress In Electromagnetics Research, Vol. 98, 1-13, 2009.
    doi:10.2528/PIER09090304

    26. Gwarek, W. and M. Celuch-Marcysiak, "Wide-band S-parameter extraction form FDTD simulations for propagating and evanescent modes in inhomogenous guides," IEEE Trans. Microwave Theory Tech., Vol. 51, No. 8, 1920-1928, August 2003.
    doi:10.1109/TMTT.2003.815265

    27. Chew, W. C. and Q. H. Liu, "Inversion of induction tool measurements using the distorted Born iterative method and CGFFHT," IEEE Trans. Geosci. Remote Sensing, Vol. 32, 878-884, July 1994.

    28. Newman, G. A., "Cross well electromagnetic inversion using integral and differential equations," Geophysics, Vol. 60, 899-910, 1995.
    doi:10.1190/1.1443825

    29. Torres-Verdin, C. and T. M. Habashy, "A two-step linear inversion of two-dimensional electrical conductivity," IEEE Trans. Antennas Propagat., Vol. 43, 405-415, 1995.
    doi:10.1109/8.376039

    30. Van den Berg, P. M., M. van der Horst, and , "Nonlinear inversion in induction logging using the modified gradient method," Radio Sci., Vol. 30, 1355-1369, 1995.
    doi:10.1029/95RS01764

    31. Howard, Jr., A. Q., W. C. Chew, and M. C. Moldoveanu, "A new correction to the born approximation," IEEE Trans. Geosci. Remote Sensing, Vol. 28, 394-399, May 1990.
    doi:10.1109/36.54365