Vol. 111

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2010-11-30

Experimental Study on a Flanged Parallel-Plate Dielectric Waveguide Probe for Detection of Buried Inclusions

By Huiyu Zhang, Soon Yim Tan, and Hong Siang Tan
Progress In Electromagnetics Research, Vol. 111, 91-104, 2011
doi:10.2528/PIER10110705

Abstract

This paper presents an experimental study of a flanged parallel-plate dielectric waveguide (PPDW) probe for detecting dielectric inclusions in a dielectric host medium, with different electrical properties from the inclusions. The S-parameter signals from an inclusion (modelled as a conducting sphere) are shown to have resonant characteristics, from which the size and location of the inclusion can be deduced. As an example of a possible application for this technique, we use parameters of host medium and inclusions relevant for detection of tumors in body tissues. An experimental study was performed on solid tissue-simulating phantoms with embedded conducting dielectric inclusions. The measurements show promising results.

Citation


Huiyu Zhang, Soon Yim Tan, and Hong Siang Tan, "Experimental Study on a Flanged Parallel-Plate Dielectric Waveguide Probe for Detection of Buried Inclusions," Progress In Electromagnetics Research, Vol. 111, 91-104, 2011.
doi:10.2528/PIER10110705
http://jpier.org/PIER/pier.php?paper=10110705

References


    1. Mahmoudi, M. and S. Y. Tan, "Depth detection of conducting marine mines via eddy-current and current-channeling response," Progress In Electromagnetic Research, Vol. 90, 287-307, 2009.
    doi:10.2528/PIER09011301

    2. Ji, W.-J. and C.-M. Tong, "Bistatic scattering from two-dimensional dielectric ocean rough surface with a PEC object partially embedded by using the G-smcg method," Progress In Electromagnetics Research, Vol. 105, 119-139, 2010.
    doi:10.2528/PIER10041101

    3. Huang, C.-W. and K.-C. Lee, "Application of ica technique to PCA based radar target recognition," Progress In Electromagnetics Research, Vol. 105, 157-170, 2010.
    doi:10.2528/PIER10042305

    4. Atteia, G. E. and K. F. A. Hussein, "Realistic model of dispersive soils using plrc-FDTD with applications to GPR systems," Progress In Electromagnetics Research B, Vol. 26, 335-359, 2010.
    doi:10.2528/PIERB10083102

    5. Lu, T., K. Agarwal, Y. Zhong, and X. Chen, "Through-wall imaging: Application of subspace-based optimization method," Progress In Electromagnetics Research, Vol. 102, 351-366, 2010.
    doi:10.2528/PIER10020903

    6. Hajihashemi, M. R. and M. El-Shenawee, "The level set shape reconstruction algorithm applied to 2D PEC targets hidden behind a wall," Progress In Electromagnetics Research B, Vol. 25, 131-154, 2010.
    doi:10.2528/PIERB10072612

    7. Narayanan, R. M., M. C. Shastry, P.-H. Chen, and M. Levi, "Through-the-wall detection of stationary human targets using doppler radar," Progress In Electromagnetics Research B, Vol. 20, 147-166, 2010.
    doi:10.2528/PIERB10022206

    8. Soldovieri, F., A. Brancaccio, G. Prisco, G. Leone, and R. Pierri, "A Kirchhoff-based shape reconstruction algorithm for the multimonostatic configuration: The realistic case of buried pipes," IEEE Trans. GeoSci. Remote Sensing, Vol. 46, No. 10, 3031-3038, 2008.
    doi:10.1109/TGRS.2008.921959

    9. Xu, P., K.-S. Chen, and L. Tsang, "Analysis of microwave emission of exponentially correlated rough soil surfaces from 1.4 GHz to 36.5 GHz," Progress In Electromagnetics Research, Vol. 108, 205-219, 2010.
    doi:10.2528/PIER10072703

    10. Prakash, R., D. Singh, and N. P. Pathak, "The effect of soil texture in soil moisture retrieval for specular scattering at C-band," Progress In Electromagnetics Research, Vol. 108, 177-204, 2010.
    doi:10.2528/PIER10050403

    11. Butnor, J. R., M. L Pruyn, D. C. Shaw, M. E. Harmon, A. N. Mucciardi, and M. G. Ryan, "Detecting defects in conifers with ground penetrating radar: Applications and challenges," Forest Pathology, Vol. 39, No. 5, 309-322, 2009.
    doi:10.1111/j.1439-0329.2009.00590.x

    12. O'Halloran, M., M. Glavin, and E. Jones, "Rotating antenna microwave imaging system for breast cancer detection," Progress In Electromagnetics Research, Vol. 107, 203-217, 2010.
    doi:10.2528/PIER10071002

    13. Conceição, R. C., M. O'Halloran, E. Jones, and M. Glavin, "Investigation of classifiers for early-stage breast cancer based on radar target signatures," Progress In Electromagnetics Research, Vol. 105, 295-311, 2010.
    doi:10.2528/PIER10051904

    14. Conceição, R. C., M. O'Halloran, M. Glavin, and E. Jones, "Support vector machines for the classification of early-stage breast cancer based on radar target signatures," Progress In Electromagnetics Research B, Vol. 23, 311-327, 2010.
    doi:10.2528/PIERB10062407

    15. Chen, G., Z. Zhao, Z. Nie, and Q. H. Liu, "Computational study of time reversal mirror technique for microwave-induced thermo-acoustic tomography," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 16, 2191-2204, 2008.
    doi:10.1163/156939308787522555

    16. Davis, S. K., B. D. V. Veen, S. C. Hagness, and F. Kelcz, "Breast tumor characterization based on ultrawideband microwave backscatter," IEEE Trans. Biomed. Eng., Vol. 66, No. 1, 237-246, 2008.
    doi:10.1109/TBME.2007.900564

    17. Pallav, P., G. G. Diamond, D. A. Hutchins, R. J. Green, and T. H. Gan, "A near-infrared technique for imaging food materials," Journal Food Science, Vol. 74, No. 1, E23-E33, 2009.
    doi:10.1111/j.1750-3841.2008.01011.x

    18. Zhang, H., S. Y. Tan, and H. S. Tan, "A novel method for breast cancer detection," Progress In Electromagnetics Research, Vol. 83, 413-434, 2008.
    doi:10.2528/PIER08062701

    19. Zhang, H., S. Y. Tan, and H. S. Tan, "A flanged parallel-plate waveguide probe for microwave imaging of tumors," Progress In Electromagnetics Research, Vol. 97, 45-60, 2009.
    doi:10.2528/PIER09090901

    20. Ruck, G. T., D. E. Barrick, W. D. Stuart, and C. K. Krichbaum, Radar Cross Section Handbook, Plenum Press, 1970.

    21. Ang, T. W., S. Y. Tan, and H. S. Tan, "Analytical methods to determine diffraction points on multiple edges and cylindrical scatterers in UTD ray tracing," Microw. Opt. Tech. Lett., Vol. 22, No. 5, 304-309, 1999.
    doi:10.1002/(SICI)1098-2760(19990905)22:5<304::AID-MOP5>3.0.CO;2-E

    22. Sun, Q., S. Y. Tan, and K. C. Teh, "Analytical formulae for path loss prediction in urban street-grid microcellular environments," IEEE Trans. Veh. Tech., Vol. 54, No. 4, 1251-1258, 2005.
    doi:10.1109/TVT.2005.851298

    23. Lazabnik, M., E. L Madsen, G. R. Frank, and S. C. Hagness, "Tissue-mimicking phantom materials for narrowband and ultrawideband microwave applications," Phys. Med. Biol., Vol. 50, 4245-4258, 2005.
    doi:10.1088/0031-9155/50/18/001

    24. Zhang, H., S. Y. Tan, and H. S. Tan, "Experimental study on flanged parallel-plate dielectric waveguide probe for early tumor detection," Journal of Electromagnetic Waves Applications, Vol. 24, No. 5-6, 681-693, 2010.
    doi:10.1163/156939310791036287

    25. Zhang, H., S. Y. Tan, and H. S. Tan, "Microwave breast cancer detection via flanged parallel-plate dielectric waveguide probe," Proceedings of International Conference on Electromagnetics in Advanced Applications, 166-169, Torino, Italy, Sep. 2009.