Vol. 111

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2010-12-09

Analysis of a Circular Waveguide Loaded with Dielectric and Metal Discs

By Vishal Kesari and Jaishanker Prasad Keshari
Progress In Electromagnetics Research, Vol. 111, 253-269, 2011
doi:10.2528/PIER10110207

Abstract

A circular waveguide loaded with dielectric and metal discs was chosen to evaluate its dispersion characteristics and dispersion shaping with change of structure parameters for wideband coalescence of beam- and waveguide-mode dispersion characteristics for wideband gyro-TWT performance. The azimuthally symmetric TE-mode analysis of the structure was carried out in field matching technique by considering the propagating wave in cylindrical free-space region having radius equal to the hole-radius of metal disc, and the stationary waves in free-space and dielectric regions between two consecutive metal discs. The dispersion relation and, in accordance, a computer code were developed. Further, the roots of the dispersion relation for various sets of the structure parameters were obtained using the developed computer code; the dispersion characteristics were plotted; and the dispersion shaping was projected for typically chosen TE01-, TE02- and TE03-modes. The analytical results were validated against those obtained for the conventional and earlier published structures, and also those obtained using commercially available simulation tool. Finally, a study on azimuthal electric field available over the radial coordinate was carried out to show the control of structure parameter on the gyrating electron beam position for the chosen operating mode of a dielectric and metal discs loaded gyro-TWT.

Citation


Vishal Kesari and Jaishanker Prasad Keshari, "Analysis of a Circular Waveguide Loaded with Dielectric and Metal Discs," Progress In Electromagnetics Research, Vol. 111, 253-269, 2011.
doi:10.2528/PIER10110207
http://jpier.org/PIER/pier.php?paper=10110207

References


    1. Kumar, D., P. K. Choudhury, and O. N. Singh II, "Towards the dispersion relations for dielectric optical fibers with helical windings under slow- and fast-wave considerations --- A comparative analysis," Progress In Electromagnetics Research, Vol. 80, 409-420, 2008.
    doi:10.2528/PIER07120302

    2. Wu, C.-J., Y.-H. Chung, B.-J. Syu, and T.-J. Yang, "Band gap extension in a one-dimensional ternary metal-dielectric photonic crystal," Progress In Electromagnetics Research, Vol. 102, 81-93, 2010.
    doi:10.2528/PIER10012004

    3. Lin, H.-N. and C.-C. Tang, "Analysis and design for high-gain antenna with periodic structures," PIERS Online, Vol. 6, No. 2, 181-184, 2010.
    doi:10.2529/PIERS090905024125

    4. Xie, H.-H., Y.-C. Jiao, K. Song, and Z. Zhang, "A novel multi-band electromagnetic band-gap structure," Progress In Electromagnetics Research Letters, Vol. 9, 67-74, 2009.
    doi:10.2528/PIERL09042302

    5. Escorcia-García, J. and M. E. M. Mora-Ramos, "Study of optical propagation in hybrid periodic/quasiregular structures based on porous silicon," PIERS Online, Vol. 5, No. 2, 167-170, 2009.
    doi:10.2529/PIERS080906010703

    6. Dai, G. and M. Xia, "Novel miniaturized bandpass filters using spiral-shaped resonators and window feed structures," Progress In Electromagnetics Research, Vol. 100, 235-243, 2010.
    doi:10.2528/PIER09120401

    7. Yang, M., J. Xu, Q. Zhao, L. Peng, and G. Li, "Compact, broad-stopband lowpass filters using sirs-loaded circular hairpin resonators," Progress In Electromagnetics Research, Vol. 102, 95-106, 2010.
    doi:10.2528/PIER09120901

    8. Chiou, Y.-C., P.-S. Yang, J.-T. Kuo, and C.-Y.Wu, "Transmission zero design graph for dual-mode dual-band filter with periodic stepped-impedance ring resonator," Progress In Electromagnetics Research, Vol. 108, 23-36, 2010.
    doi:10.2528/PIER10071608

    9. Amari, S., R. Vahldieck, J. Bornemann, and P. Leuchtmann, "Spectrum of corrugated and periodically loaded waveguides from classical matrix eigenvalues," IEEE Trans. Microwave Theory Tech., Vol. 48, 453-460, 2000.
    doi:10.1109/22.826846

    10. Amari, S., R. Vahldieck, and J. Bornemann, "Analysis of propagation in periodically loaded circular waveguide," IEE Proc. Microwave Antennas Propagation, Vol. 146, No. 1, 50-54, 1999.
    doi:10.1049/ip-map:19990140

    11. Clarricoats, P. J. B. and A. D. Olver, Corrugated Horns for Microwave Antennas, Peter Peregrinus, London, 1984.
    doi:10.1049/PBEW018E

    12. Heydari, R. D., H. R. Hassani, and A. R. Mallahzadeh, "A new 2-18 GHz quad-ridged horn antenna," Progress In Electromagnetics Research, Vol. 81, 183-195, 2008.
    doi:10.2528/PIER08010103

    13. Uher, J., J. Bornemann, and U. Rosenberg, Waveguides Components for Antenna Feed Systems: Theory and CAD, Artech House, Norwood, 1993.

    14. Shi, W., L. Yuzheng, and T. Higo, "A new method for dispersion curves of HOM in periodical axisymmetric accelerating structures," Proc. 2nd Asian Particle Accelerator Conf., 153-155, Beijing, China, 2001.

    15. Hu, Y., C. Tang, H. Chen, Y. Lin, and D. Tong, "An X-band disk and washer accelerating structure for electron accelerators," Proc. Particle Accelerator Conf., 975-977, Chicago, 2001.

    16. Amin, M. R. and K. Ogura, "Dispersion characteristics of a rectangularly corrugated cylindrical slow-wave structure driven by a non-relativistic annular electron beam," IET Microwave Antennas Propag., Vol. 1, No. 3, 575-579, 2007.
    doi:10.1049/iet-map:20060279

    17. Ding, S., B. Jia, F. Li, and Z. Zhu, "3D simulation of 18-vane 5.8 GHz magnetron," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 14-15, 1925-1930, 2008.
    doi:10.1163/156939308787537946

    18. Malek, F., "The analytical design of a folded waveguide traveling wave tube and small signal gain analysis using Madey's theorem," Progress In Electromagnetics Research, Vol. 98, 137-162, 2009.
    doi:10.2528/PIER09092604

    19. Mulcahy, T., H. Song, and F. Francisco, "New method of integrating periodic permanent magnet (PPM) assembly in traveling wave tubes (TWTs)," Progress In Electromagnetics Research C, Vol. 10, 187-199, 2009.
    doi:10.2528/PIERC09082907

    20. Jain, P. K. and B. N. Basu, "Electromagnetic wave propagation through helical structures," Electromagnetic Fields in Unconventional Materials, O. N. Singh and A. Lakhtakia, Ed., John Wiley & Sons, USA, 2000.

    21. Zhu, Z. J., B. F. Jia, and D. M. Wan, "Efficiency improvement of helix traveling-wave tube," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 13, 1747-1756, 2008.
    doi:10.1163/156939308786375145

    22. Duan, Z. Y., Y. B. Gong, Y. Y. Wei, W. X. Wang, B.-I. Wu, and J. A. Kong, "Efficiency improvement of broadband helix traveling wave tubes using hybrid phase velocity tapering model," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 7, 1013-1023, 2008.
    doi:10.1163/156939308784150119

    23. Jerby, E. and G. Bekefi, "Cyclotron maser experiments in a periodic wave guide," Phys. Rev. E, Vol. 48, No. 6, 4637-4641, 1993.
    doi:10.1103/PhysRevE.48.4637

    24. Chu, K. R., "The electron cyclotron maser," Rev. Mod. Phys., Vol. 76, No. 2, 489-540, May 2004.
    doi:10.1103/RevModPhys.76.489

    25. Barroso, J. J., R. A. Correa, and P. J. de Castro, "Gyrotron coaxial cylindrical resonators with corrugated inner conductor: Theory and experiment," IEEE Trans. Microwave Theory Tech., Vol. 46, No. 9, 1221-1230, Sep. 1998.
    doi:10.1109/22.709460

    26. Iatrou, C. T., S. Kern, and A. B. Pavelyev, "Coaxial cavities with corrugated inner conductor for gyrotrons," IEEE Trans. Microwave Theory Tech., Vol. 44, No. 1, 56-64, Jan. 1996.
    doi:10.1109/22.481385

    27. Thumm, M., "State-of-the-art of high-power gyro-devices and free electron masers, Update 2008,", Scientific Report FZKA 6224, Forschungszentrum Karlsruhe, Germany, Jan. 2008.

    28. Singh, G., "Analytical study of the interaction structure of vane-loaded gyro-traveling wave tube amplifier," Progress In Electromagnetics Research B, Vol. 4, 41-66, 2008.
    doi:10.2528/PIERB08010402

    29. Qiu, C. R., Z. B. Ouyang, S. C. Zhang, H. B. Zhang, and J. B. Jin, "Self-consistent nonlinear investigation of an outer-slotted-coaxial waveguide gyrotron traveling-wave amplifier," IEEE Trans. Plasma Sci., Vol. 33, No. 3, 1013-1018, Jun. 2005.
    doi:10.1109/TPS.2005.848600

    30. Kesari, V., Analysis of Disc-loaded Circular Waveguides for Wideband Gyro-TWTs, LAP-Lambert Academic Publishing AG & Co., Germany, 2009, ISBN: 978-3-8383-1145-6.

    31. Kesari, V., P. K. Jain, and B. N. Basu, "Analytical approaches to a disc loaded cylindrical waveguide for potential application in wideband gyro-TWTs," IEEE Trans. Plasma Sci., Vol. 32, No. 5, 2144-2151, Oct. 2004.
    doi:10.1109/TPS.2004.835518

    32. Kesari, V., P. K. Jain, and B. N. Basu, "Analysis of a circular waveguide loaded with thick annular metal discs for wideband gyro-TWTs," IEEE Trans. Plasma Sci., Vol. 33, No. 4, 1358-1365, Aug. 2005.
    doi:10.1109/TPS.2005.852393

    33. Kesari, V., P. K. Jain, and B. N. Basu, "Analysis of a disc-loaded circular waveguide for interaction impedance of a gyrotron amplifier," Int. J. Infrared and Millimeter Waves, Vol. 26, No. 8, 1093-1110, Aug. 2005.
    doi:10.1007/s10762-005-7270-9

    34. Kesari, V., P. K. Jain, and B. N. Basu, "Modeling of axially periodic circular waveguide with combined dielectric and metal loading," J. Physics D: Applied Physics, Vol. 38, 3523-3529, Sep. 2005.
    doi:10.1088/0022-3727/38/18/030

    35. Kesari, V., "Beam-absent analysis of disc-loaded-coaxial waveguide for its application in gyro-TWT (Part-1)," Progress In Electromagnetics Research, Vol. 109, 211-227, 2010.
    doi:10.2528/PIER10071305

    36. Kesari, V., "Beam-present analysis of disc-loaded-coaxial waveguide for its application in gyro-TWT (Part-2)," Progress In Electromagnetics Research, Vol. 109, 229-243, 2010.
    doi:10.2528/PIER10071505

    37. Choe, J. Y. and H. S. Uhm, "Theory of gyrotron amplifiers in disc or helix loaded waveguides," Int. J. Electron., Vol. 53, No. 6, 729-741, Jun. 1982.
    doi:10.1080/00207218208901564

    38. Leou, K. C., T. Pi, D. B. Mcdermott, and Jr. N. C. Luhmann, "Circuit design for a wideband disc loaded gyro-TWT amplifier," IEEE Trans. Plasma Sc., Vol. 26, No. 3, 488-495, Jun. 1998.
    doi:10.1109/27.700782

    39. Yue, L., W. Wang, Y. Wei, and Y. Gong, "Approach to a coaxial arbitrary-shaped groove cylindrical waveguide for application in wideband gyro-TWTs," IEEE Trans. Plasma Sc., Vol. 35, No. 3, 551-558, Jun. 2007.
    doi:10.1109/TPS.2007.896982

    40. Bratman, V. L., A. W. Gross, G. G. Denisov, W. He, A. D. R. Phelps, K. Ronald, S. V. Samsonov, C. G. Whyte, and A. R. Young, "High-gain wide-band gyrotron traveling wave amplifier with a helically corrugated waveguide," Phys. Rev. Lett., Vol. 84, No. 12, 2746-2749, Mar. 2000.
    doi:10.1103/PhysRevLett.84.2746

    41. Rao, S. J., P. K. Jain, and B. N. Basu, "Broadbanding of gyro-TWT by dielectric-loading through dispersion shaping," IEEE Trans. Electron Dev., Vol. 43, No. 12, 2290-2299, Dec. 1996.
    doi:10.1109/16.544423

    42. Rao, S. J., P. K. Jain, and B. N. Basu, "Hybrid-mode helix-loading effects on gyro-travelling-wave tubes," Int. J. Electron., Vol. 82, No. 6, 663-675, Jun. 1997.
    doi:10.1080/002072197135814