Vol. 110

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2010-11-20

On the Imaging of Thin Dielectric Inclusions via Topological Derivative Concept

By Won-Kwang Park
Progress In Electromagnetics Research, Vol. 110, 237-252, 2010
doi:10.2528/PIER10101305

Abstract

In this paper, we consider the imaging of thin dielectric inclusions completed embedded in the homogeneous domain. To image such inclusion from boundary measurements, topological derivation concept is adopted. For that purpose, an asymptotic expansion of the boundary perturbations that are due to the presence of a small inclusion is considered. Applying this formula, we can design only one iteration procedure for imaging of thin inclusions by means of solving adjoint problem. Various numerical experiments without and with some noise show how the proposed techniques behave

Citation


Won-Kwang Park, "On the Imaging of Thin Dielectric Inclusions via Topological Derivative Concept," Progress In Electromagnetics Research, Vol. 110, 237-252, 2010.
doi:10.2528/PIER10101305
http://jpier.org/PIER/pier.php?paper=10101305

References


    1. Álvarez, D., O. Dorn, N. Irishina, and M. Moscoso, "Crack reconstruction using a level-set strategy," J. Comput. Phys., Vol. 228, 5710-5721, 2009.
    doi:10.1016/j.jcp.2009.04.038

    2. Ammari, H., An Introduction to Mathematics of Emerging Biomedical Imaging, Vol. 62, Mathematics and Applications Series, Springer-Verlag, Berlin, 2008.

    3. Ammari, H., E. Iakovleva, and D. Lesselier, "A MUSIC algorithm for locating small inclusions buried in a half-space from the scattering amplitude at a fixed frequency," SIAM Multiscale Modeling Simulation, Vol. 3, 597-628, 2005.
    doi:10.1137/040610854

    4. Ammari, H. and H. Kang, Reconstruction of Small Inhomogeneities from Boundary Measurements, Vol. 1846, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2004.

    5. Ammari, H., H. Kang, H. Lee, and W. K. Park, "Asymptotic imaging of perfectly conducting cracks," SIAM J. Sci. Comput., Vol. 32, 894-922, 2010.
    doi:10.1137/090749013

    6. Auroux, D. and M. Masmoudi, "Image processing by topological asymptotic analysis," ESAIM: Proc., Vol. 26, 24-44, 2009.
    doi:10.1051/proc/2009003

    7. Beretta, E. and E. Francini, "Asymptotic formulas for perturbations of the electromagnetic fields in the presence of thin imperfections," Contemp. Math., Vol. 333, 49-63, 2000.
    doi:10.1090/conm/333/05953

    8. Carpio, A. and M.-L. Rapun, "Solving inhomogeneous inverse problems by topological derivative methods," Inverse Problems, Vol. 24, 045014, 2008.
    doi:10.1088/0266-5611/24/4/045014

    9. Chen, X., "Subspace-based optimization method in electric impedance tomography," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 11-12, 1397-1406, 2009.
    doi:10.1163/156939309789476301

    10. Cheney, M., "The linear sampling method and the MUSIC algorithm," Inverse Problems, Vol. 17, 591-595, 2001.
    doi:10.1088/0266-5611/17/4/301

    11. Cheng, X., B.-I.Wu, H. Chen, and J. A. Kong, "Imaging of objects through lossy layer with defects," Progress In Electromagnetics Research, Vol. 84, 11-26, 2008.
    doi:10.2528/PIER08052302

    12. Chien, W., "Inverse scattering of an un-uniform conductivity scatterer buried in a three-layer structure," Progress In Electromagnetics Research, Vol. 82, 1-18, 2008.
    doi:10.2528/PIER08012902

    13. Colton, D., H. Haddar, and P. Monk, "The linear sampling method for solving the electromagnetic inverse scattering problem," SIAM J. Sci. Comput., Vol. 24, 719-731, 2002.

    14. Conceicao, R. C., M. O'Halloran, M. Glavin, and E. Jones, "Comparison of planar and circular antenna configurations for breast cancer detection using microwave imaging," Progress In Electromagnetics Research, Vol. 99, 1-20, 2009.
    doi:10.2528/PIER09100204

    15. Davy, M., J.-G. Minonzio, J. de Rosny, C. Prada, and M. Fink, "Influence of noise on subwavelength imaging of two close scatterers using time reversal method: theory and experiments," Progress In Electromagnetics Research, Vol. 98, 333-358, 2009.
    doi:10.2528/PIER09071004

    16. Dorn, O. and D. Lesselier, "Level set methods for inverse scattering," Inverse Problems, Vol. 22, R67-R131, 2006.
    doi:10.1088/0266-5611/22/4/R01

    17. Eschenauer, H. A., V. V. Kobelev, and A. Schumacher, "Bubble method for topology and shape optimization of structures," Struct. Optim., Vol. 8, 42-51, 1994.
    doi:10.1007/BF01742933

    18. Hou, S., K. Sølna, and H. Zhao, "A direct imaging algorithm for extended targets," Inverse Problems, Vol. 22, 1151-1178, 2006.
    doi:10.1088/0266-5611/22/4/003

    19. Kirsch, A. and S. Ritter, "A linear sampling method for inverse scattering from an open arc," Inverse Problems, Vol. 16, 89-105, 2000.
    doi:10.1088/0266-5611/16/1/308

    20. Lee, H. and W. K. Park, "Location search algorithm of thin conductivity inclusions via boundary measurements," ESAIM: Proc., Vol. 26, 217-229, 2009.
    doi:10.1051/proc/2009015

    21. Lesselier, D. and B. Duchene, "Buried, 2-D penetrable objects illuminated by line sources: FFT-based iterative computations of the anomalous field," Progress In Electromagnetic Research, Vol. 5, 351-389, 1991.

    22. Li, F., X. Chen, and K. Huang, "Microwave imaging a buried object by the GA and using the S11 parameter," Progress In Electromagnetics Research, Vol. 85, 289-302, 2008.
    doi:10.2528/PIER08081401

    23. Nazarchuk, Z. and K. Kobayashi, "Mathematical modelling of electromagnetic scattering from a thin penetrable target," Progress In Electromagnetic Research, Vol. 55, 95-116, 2005.
    doi:10.2528/PIER05022003

    24. Park, W. K., "Non-iterative imaging of thin electromagnetic inclusions from multi-frequency response matrix," Progress In Electromagnetic Research, Vol. 106, 225-241, 2010.
    doi:10.2528/PIER10052506

    25. Park, W. K., "On the imaging of thin dielectric inclusions buried within a half-space," Inverse Problems, Vol. 26, 074008, 2010.
    doi:10.1088/0266-5611/26/7/074008

    26. Park, W. K. and D. Lesselier, "Electromagnetic MUSIC-type imaging of perfectly conducting, arc-like cracks at single frequency," J. Comput. Phys., Vol. 228, 8093-8111, 2009.
    doi:10.1016/j.jcp.2009.07.026

    27. Park, W. K. and D. Lesselier, "MUSIC-type imaging of a thin penetrable inclusion from its far-field multi-static response matrix," Inverse Problems, Vol. 25, 075002, 2009.
    doi:10.1088/0266-5611/25/7/075002

    28. Park, W. K. and D. Lesselier, "Reconstruction of thin electromagnetic inclusions by a level set method," Inverse Problems, Vol. 25, 085010, 2009.
    doi:10.1088/0266-5611/25/8/085010

    29. Ramananjaona, C., M. Lambert, D. Lesselier, and J.-P. Zolé sio, "Shape reconstruction by controlled evolution of a level set: from a min-max formulation to numerical experimentation," Inverse Problems, Vol. 17, 1087-1111, 2001.
    doi:10.1088/0266-5611/17/4/335

    30. Raza, M. I. and R. E. DuBroff, "Detecting dissimilarities in EM constitutive parameters using differential imaging operator on reconstructed wavefield," Progress In Electromagnetics Research, Vol. 98, 267-282, 2009.
    doi:10.2528/PIER09092403

    31. Sokolowski, J. and A. Zochowski, "On the topological derivative in shape optimization," SIAM J. Control Optim., Vol. 37, No. 4, 1251-1272, 1999.
    doi:10.1137/S0363012997323230

    32. Soleimani, M., "Simultaneous reconstruction of permeability and conductivity in magnetic induction tomography," Journal of Electromagnetic Waves and Applications, Vol. 23, 785-798, 2009.
    doi:10.1163/156939309788019822

    33. Zhou, H., T. Takenaka, J. E. Johnson, and T. Tanaka, "A breast imaging model using microwaves and a time domain three dimensional reconstruction method," Progress In Electromagnetics Research, Vol. 93, 57-70, 2009.
    doi:10.2528/PIER09033001