Vol. 110

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2010-11-26

Microwave Method for Thickness-Independent Permittivity Extraction of Low-Loss Dielectric Materials from Transmission Measurements

By Ugur Cem Hasar
Progress In Electromagnetics Research, Vol. 110, 453-467, 2010
doi:10.2528/PIER10101208

Abstract

A non-resonant microwave method has been proposed for complex permittivity determination of low-loss materials with no prior information of sample thickness. The method uses two measurement data of maximum/minimum value of the magnitude of transmission properties of the sample. An explicit expression for sample thickness and two expressions for inversion of the complex permittivity of the sample are derived. The method has been validated by transmission measurements at X-band (8.2--12.4 GHz) of a low-loss sample located into a waveguide sample holder.

Citation


Ugur Cem Hasar, "Microwave Method for Thickness-Independent Permittivity Extraction of Low-Loss Dielectric Materials from Transmission Measurements," Progress In Electromagnetics Research, Vol. 110, 453-467, 2010.
doi:10.2528/PIER10101208
http://jpier.org/PIER/pier.php?paper=10101208

References


    1. Zoughi, R., Microwave Non-destructive Testing and Evaluation, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000.

    2. Zhang, H., S. Y. Tan, and H. S. Tan, "An improved method for microwave nondestructive dielectric measurement of layered media," Progress In Electromagnetics Research B, Vol. 10, 145-161, 2008.
    doi:10.2528/PIERB08082701

    3. Zhang, H., S. Y. Tan, and H. S. Tan, "A novel method for microwave breast cancer detection," Progress In Electromagnetics Research, Vol. 83, 413-434, 2008.
    doi:10.2528/PIER08062701

    4. Le Floch, J. M., F. Houndonougbo, V. Madrangeas, D. Cros, M. Guilloux-Viry, and W. Peng, "Thin film materials characterization using TE modes," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 4, 549-559, 2009.
    doi:10.1163/156939309787612293

    5. Jin, H., S. R. Dong, and D. M. Wang, "Measurement of dielectric constant of thin film materials at microwave frequencies," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5-6, 809-817, 2009.
    doi:10.1163/156939309788019831

    6. Wu, Y. Q., Z. X. Tang, Y. H. Xu, and B. Zhang, "Measuring complex permeability of ferromagnetic thin films using microstrip transmission method," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 10, 1303-1311, 2009.
    doi:10.1163/156939309789108598

    7. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B, Vol. 65, 195104(5), 2002.

    8. Chen, X., T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, Jr., and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E, Vol. 70, 016608(7), 2004.

    9. Hasar, U. C., "Accurate complex permittivity inversion from measurements of a sample partially filling a waveguide aperture," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 2, 451-457, 2010.
    doi:10.1109/TMTT.2009.2038444

    10. Hasar, U. C., "A new microwave method for electrical characterization of low-loss materials," IEEE Microw. Wireless Compon. Lett., Vol. 19, No. 12, 801-803, 2009.
    doi:10.1109/LMWC.2009.2033512

    11. Hasar, U. C., "A microwave method for noniterative constitutive parameters determination of thin low-loss of lossy materials," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 6, 1595-1601, 2009.
    doi:10.1109/TMTT.2009.2020779

    12. Hasar, U. C., "Thickness-independent automated constitutive parameters extraction of thin solid and liquid materials from waveguide measurements," Progress In Electromagnetics Research, Vol. 92, 17-32, 2009.
    doi:10.2528/PIER09031606

    13. Barroso, J. J. and A. L. De Paula, "Retrieval of permittivity and permeability of homogeneous materials from scattering parameters," Journal of Electromagnetic Waves and Applications, Vol. 24, 1563-1574, Aug. 2010.
    doi:10.1163/156939310792149759

    14. Hasar, U. C. and O. Simsek, "An accurate complex permittivity method for thin dielectric materials," Progress In Electromagnetics Research, Vol. 91, 123-138, 2009.
    doi:10.2528/PIER09011702

    15. Hasar, U. C., "A new calibration-independent method for complex permittivity extraction of solid dielectric materials," IEEE Microw. Wireless Compon. Lett., Vol. 18, No. 12, 788-790, Dec. 2008.
    doi:10.1109/LMWC.2008.2007699

    16. Wu, Y., Z. Tang, Y. Yu, and X. He, "A new method to avoid crowding phenomenon in extracting the permittivity of ferroelectric thin films," Progress In Electromagnetics Research Letters, Vol. 4, 159-166, 2008.
    doi:10.2528/PIERL08091402

    17. Challa, R. K., et al., "Permittivity measurement with a non-standard waveguide by using TRL calibration and fractional linear data fitting," Progress In Electromagnetics Research B, Vol. 2, 1-13, 2008.
    doi:10.2528/PIERB07102001

    18. Zainud-Deen, S. H., M. E. S. Badr, E. El-Deen, and K. H. Awadalla, "Microstrip antenna with corrugated ground plane surface as a sensor for landmines detection," Progress In Electromagnetics Research B, Vol. 2, 259-278, 2008.
    doi:10.2528/PIERB07112702

    19. He, X., Z. X. Tang, B. Zhang, and Y. Q.Wu, "A new deembedding method in permittivity measurement of ferroelectric thin film material," Progress In Electromagnetics Research Letters, Vol. 3, 1-8, 2008.
    doi:10.2528/PIERL08011501

    20. Wu, Y. Q., Z. X. Tang, Y. H. Xu, X. He, and B. Zhang, "Permittivity measurement of ferroelectric thin film based on CPW transmission line," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 4, 555-562, 2008.
    doi:10.1163/156939308784150272

    21. Hasar, U. C., "Permittivity determination of fresh cement-based materials by an open-ended waveguide probe using amplitude-only measurements," Progress In Electromagnetics Research, Vol. 97, 27-43, 2009.
    doi:10.2528/PIER09071409

    22. Nicolson, A. M. and G. Ross, "Measurement of the intrinsic properties of materials by timedomain techniques," IEEE Trans. Instrum. Meas., Vol. 19, No. 4, 377-382, 1970.
    doi:10.1109/TIM.1970.4313932

    23. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proc. IEEE, Vol. 62, No. 1, 33-36, 1974.
    doi:10.1109/PROC.1974.9382

    24. Baker-Jarvis, J., E. J. Vanzura, and W. A. Kissick, "Improved technique for determining complex permittivity with the transmission/refltion method," IEEE Trans. Microw. Theory Tech., Vol. 38, No. 8, 1096-1103, 1990.
    doi:10.1109/22.57336

    25. Boughriet, A. H., C. Legrand, and A. Chapoton, "Noniterative stable transmission/reflection method for lowloss material complex permittivity determination," IEEE Trans. Microw. Theory Tech., Vol. 45, No. 1, 52-57, 1997.
    doi:10.1109/22.552032

    26. Hasar, U. C. and C. R. Westgate, "A broadband and stable method for unique complex permittivity determination of low-loss materials," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 2, 471-477, Feb. 2009.
    doi:10.1109/TMTT.2008.2011242

    27. Hasar, U. C., "Two novel amplitude-only methods for complex permittivity determination of medium- and low-loss materials," Meas. Sci. Technol., Vol. 19, No. 5, 055706(10), 2008.
    doi:10.1088/0957-0233/19/5/055706

    28. Hasar, U. C., "A fast and accurate amplitude-only transmission-reflection method for complex permittivity determination of lossy materials," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 9, 2129-2135, Sep. 2008.
    doi:10.1109/TMTT.2008.2002229

    29. Hasar, U. C., C. R. Westgate, and M. Ertugrul, "Noniterative permittivity extraction of lossy liquid materials from reflection asymmetric amplitude-only microwave measurements," IEEE Microw. Wireless Compon. Lett., Vol. 19, No. 6, 419-421, Jun. 2009.
    doi:10.1109/LMWC.2009.2020045

    30. Mahony, J. D., "Measurements to estimate the relative permittivity and loss tangent of thin, low-loss materials," IEEE Antennas Propag. Mag., Vol. 47, No. 3, 83-87, 2005.
    doi:10.1109/MAP.2005.1532552

    31. Muqaibel, A. H. and A. Safaai-Jazi, "A new formulation for characterization of materials based on measured insertion transfer function," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 8, 1946-1951, 2003.
    doi:10.1109/TMTT.2003.815274

    32. Hasar, U. C., "A generalized formulation for permittivity extraction of low-to-high-loss materials from transmission measurement," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 2, 411-418, Feb. 2010.
    doi:10.1109/TMTT.2009.2038443

    33. Hasar, U. C., "A new microwave method based on transmission scattering parameter measurements for simultaneous broadband and stable permittivity and permeability determination," Progress In Electromagnetics Research, Vol. 93, 161-176, 2009.
    doi:10.2528/PIER09041405

    34. Ness, J., "Broad-band permittivity measurements using the semi-automatic network analyzer," IEEE Trans. Microw. Theory Tech., Vol. 33, No. 11, 1222-1226, 1985.
    doi:10.1109/TMTT.1985.1133198

    35. Ball, J. A. R. and B. Horsfield, "Resolving ambiguity in broadband waveguide permittivity measurements on moist materials," IEEE Trans. Instrum. Meas., Vol. 47, No. 2, 390-392, 1998.
    doi:10.1109/19.744179

    36. Hasar, U. C., "Elimination of the multiple-solutions ambiguity in permittivity extraction from transmission-only measurements of lossy materials," Microw. Opt. Technol. Lett., Vol. 51, No. 2, 337-341, Feb. 2009.
    doi:10.1002/mop.24048

    37. Xia, S., Z. Xu, and X. Wei, "Thickness-induced resonance-based complex permittivity measurement technique for barium strontium titanate ceramics at microwave frequency," Rev. Sci. Instrum., Vol. 80, No. 11, 114703(4), 2009.
    doi:10.1063/1.3237244

    38. Hasar, U. C., "Unique permittivity determination of low-loss dielectric materials from transmission measurements at microwave frequencies," Progress In Electromagnetics Research, Vol. 107, 31-46, 2010.
    doi:10.2528/PIER10060805

    39. Engen, G. F. and C. A. Hoer, "`Thru-reflect-line': An improved technique for calibrating the dual six-port automatic network analyzer," IEEE Trans. Microw. Theory Tech., Vol. 27, No. 12, 987-993, Dec. 1979.
    doi:10.1109/TMTT.1979.1129778

    40. Von Hippel, A. R., Dielectric Materials and Applications, 134-135, 310-332, John Wiley & Sons, NY, 1954.