Vol. 110

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2010-11-25

Class of Electromagnetic Sq-Media

By Ismo Veikko Lindell
Progress In Electromagnetics Research, Vol. 110, 371-382, 2010
doi:10.2528/PIER10100601

Abstract

A novel class of electromagnetic media called that of SQ-media is defined in terms of compact four-dimensional differential-form formalism. The medium class lies between two known classes, that of Q-media and SD-media (also called self-dual media). Eigenfields for the defined medium dyadic are derived and shown to be uncoupled in a homogeneous medium. However, energy transport requires their interaction. The medium shares the nonbirefringence property of the Q-media (not shared by the SD media) and the eigenfield decomposition property of the SD media (not shared by the Q-media). Comparison of the three medium classes is made in terms of their three-dimensional medium dyadics.

Citation


Ismo Veikko Lindell, "Class of Electromagnetic Sq-Media," Progress In Electromagnetics Research, Vol. 110, 371-382, 2010.
doi:10.2528/PIER10100601
http://jpier.org/PIER/pier.php?paper=10100601

References


    1. Kong, J. A., Electromagnetic Wave Theory, 138, EMW Publishing, Cambridge, MA, 2005.

    2. Lindell, I. V., Methods for Electromagnetic Field Analysis, 54, Wiley, New York, 1995.

    3. Deschamps, G. A., "Electromagnetics and differential forms," Proc. IEEE, Vol. 69, No. 6, 676-696, 1981.
    doi:10.1109/PROC.1981.12048

    4. Hehl, F. W. and Y. N. Obukhov, Foundations of Classical Electrodynamics, Birkhäuser, Boston, 2003.
    doi:10.1007/978-1-4612-0051-2

    5. Lindell, I. V., Differential Forms in Electromagnetics, Wiley, New York, 2004.
    doi:10.1002/0471723096

    6. Lindell, I. V., "Wave equations for bi-anisotropic media in differential forms," Journal of Electromagnetic Waves and Applications, Vol. 16, No. 11, 1615-1635, 2002.
    doi:10.1163/156939302X01038

    7. Lindell, I. V., "Differential forms and electromagnetic materials," Theory and Phenomena of Metamaterials, F. Capolino (ed.), 4.1-4.16, CRC Press, Boca Raton, 2009.

    8. Lindell, I. V. and H. Wallén, "Differential-form electromagnetics and bi-anisotropic Q-media," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 7, 957-968, 2004.
    doi:10.1163/156939304323105772

    9. Gibbs, J. W., Vector Analysis, Dover, New York, 1960 (reprint from the 2nd edition of 1909).

    10. Lindell, I. V. and F. Olyslager, "Generalized decomposition of electromagnetic fields in bi-anisotropic media," IEEE Trans. Antennas Propag., Vol. 46, 1584-1585, 1998.
    doi:10.1109/8.725294

    11. Lindell, I. V. and A. Sihvola, "Perfect electromagnetic conductor," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 7, 861-869, 2005.
    doi:10.1163/156939305775468741

    12. Lindell, I. V., "Electromagnetic fields in self-dual media in differential-form representation," Progress In Electromagnetics Research, Vol. 58, 319-333, 2006.
    doi:10.2528/PIER05072201

    13. Lindell, I. V., "Class of electromagnetic SD media," Metamaterials, Vol. 2, No. 2-3, 54-70, 2008.
    doi:10.1016/j.metmat.2008.02.001

    14. Lindell, I. V. and H. Wallén, "Generalized Q-media and field decomposition in differential-form approach," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 8, 1045-1056, 2004.
    doi:10.1163/1569393042955397

    15. Bohren, C. F., "Light scattering by an optically active sphere," Chem. Phys. Lett., Vol. 29, No. 3, 458-462, 1974.
    doi:10.1016/0009-2614(74)85144-4