Vol. 111

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2010-12-09

Error Control of the Vectorial Nondirective Stable Plane Wave Multilevel Fast Multipole Algorithm

By Ignace Bogaert, Joris Peeters, and Daniel De Zutter
Progress In Electromagnetics Research, Vol. 111, 271-290, 2011
doi:10.2528/PIER10090604

Abstract

Novel formulas are presented that allow the rapid estimation of the number of terms L that needs to be taken into account in the translation operator of the vectorial Nondirective Stable Plane Wave Multilevel Fast Multipole Algorithm (NSPWMLFMA). This is especially important for low frequencies, since the L needed for error-controllability can be substantially higher than the L required in the scalar case. Although these formulas were originally derived for use in the NSPWMLFMA, they are equally useful in at least three other fast matrix multiplication methods.

Citation


Ignace Bogaert, Joris Peeters, and Daniel De Zutter, "Error Control of the Vectorial Nondirective Stable Plane Wave Multilevel Fast Multipole Algorithm," Progress In Electromagnetics Research, Vol. 111, 271-290, 2011.
doi:10.2528/PIER10090604
http://jpier.org/PIER/pier.php?paper=10090604

References


    1. Greengard, L. and V. Rokhlin, "A fast algorithm for particle simulations," Journal of Computational Physics, Vol. 73, No. 2, 325-348, Dec. 1987.
    doi:10.1016/0021-9991(87)90140-9

    2. Coifman, R., V. Rokhlin, and S. Wandzura, "The fast multipole method for the wave equation: A pedestrian prescription," IEEE Antennas and Propagation Magazine, Vol. 35, No. 3, 7-12, Jun. 1993.
    doi:10.1109/74.250128

    3. Chew, W. C., J. M. Jin, C. C. Lu, E. Michielssen, and J. M. Song, "Fast solution methods in electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 3, 533-543, Mar. 1997.
    doi:10.1109/8.558669

    4. Song, J. M., C. C. Lu, W. C. Chew, and S. W. Lee, "Fast illinois solver code (FISC)," IEEE Antennas and Propagation Magazine, Vol. 40, No. 3, 27-34, Jun. 1998.
    doi:10.1109/74.706067

    5. Darve, E. and P. Hav'e, "Efficient fast multipole method for lowfrequency scattering," Journal of Computational Physics, Vol. 197, No. 1, 341-363, Jun. 2004.
    doi:10.1016/j.jcp.2003.12.002

    6. Fostier, J., J. Peeters, I. Bogaert, and F. Olyslager, "An open-source, kernel-independent, asynchronous, parallel MLFMA framework," Proceedings of the USNC/URSI National Radio Science Meeting, 5-12, San Diego, USA, Jul. 2008.

    7. Taboada, J. M., M. G. Araujo, J. M. Bertolo, L. Landesa, F. Obelleiro, and J. L. Rodriguez, "MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetics," Progress In Electromagnetics Research, Vol. 105, 15-30, 2010.
    doi:10.2528/PIER10041603

    8. Chew, W. C., J. Jin, E. Michielssen, and J. Song, Fast and Efficient Algorithms in Computational Electromagnetics, Artech House, 2001.

    9. Bogaert, I., J. Peeters, and F. Olyslager, "A nondirective plane wave MLFMA stable at low frequencies," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 12, 3752-3767, Dec. 2008.
    doi:10.1109/TAP.2008.2007356

    10. Peeters, J., K. Cools, I. Bogaert, F. Olyslager, and D. De Zutter, "Embedding Calderón multiplicative preconditioners in multilevel fast multipole algorithms," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 4, 1236-1250, Apr. 2010.
    doi:10.1109/TAP.2010.2041145

    11. Bogaert, I. and F. Olyslager, "A low frequency stable plane wave addition theorem," Journal of Computational Physics, Vol. 228, No. 4, 1000-1016, Mar. 2009.
    doi:10.1016/j.jcp.2008.10.022

    12. Bogaert, I. and F. Olyslager, "New plane wave addition theorems Mathematical Modeling of Wave Phenomena," Proceedings of the 3rd International Conference on Mathematical Modeling of Wave Phenomena, 46-55, Växjö, Sweden, Jun. 2008.

    13. Rokhlin, V., "Sparse diagonal forms for translation operators for the Helmholtz equation in two dimensions,", Research Report, YALEU/DCS/RR-1095, Dec. 1995.

    14. Ohnuki, S. and W. Chew, "Numerical accuracy of multipole expansion for 2-D MLFMA," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 8, 184-188, Aug. 2003.
    doi:10.1109/TAP.2003.815425

    15. Hastriter, M., S. Ohnuki, and W. Chew, "Error control of the translation operator in 3D MLFMA," Microwave and Optical Technology Letters, Vol. 37, No. 3, 184-188, May 2003.
    doi:10.1002/mop.10862

    16. Rao, S. D., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 30, No. 3, May 1982.
    doi:10.1109/TAP.1982.1142818

    17. Golub, G. H. and C. F. Van Loan, Matrix Computations, 3 Ed., Johns Hopkins University Press, 1996.