Vol. 110

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Transport and Electronic Properties of Two Dimensional Electron Gas in Delta-Migfet in GaAs

By Outmane Oubram, Luis Manuel Gaggero-Sager, Ali Bassam, and German A. Luna Acosta
Progress In Electromagnetics Research, Vol. 110, 59-80, 2010


The objective of this work is to analyze electronic transport phenomena, due to ionized impurity scattering in δ-MIGFET (Delta-Multiple Independent Gate Field Effect Transistor). In this work, we report theoretical results for electronic transport in a delta-MIGFET using the device electronic structure and analytical expression of mobility and conductivity. The results show that the analytical mobility and conductivity are a good way to analyze transport in this device. We find the relative mobility as a linear and increasing function in different modes; also, we find transconductance as an almost flat function in all the evaluated interval. Finally, we analyze the differential capacitance and resistivity, and we report regions where this device is operating in digital and analogue mode. These regions are delimited in terms of intrinsic and extrinsic parameters of this device in symmetrical mode.


Outmane Oubram, Luis Manuel Gaggero-Sager, Ali Bassam, and German A. Luna Acosta, "Transport and Electronic Properties of Two Dimensional Electron Gas in Delta-Migfet in GaAs ," Progress In Electromagnetics Research, Vol. 110, 59-80, 2010.


    1. Kimura, S., D. Hisamoto, and N. Sugii, "Prospect of Si semiconductor devices in nanometer era," Hitachi Review, Vol. 54, No. 1, 2-8, 2005.

    2. Munteanu, D. and J. L. Autran, "3-D simulation analysis of bipolar amplification in planar double-gate and FinFET with independent gates," IEEE Trans. Nucl. Sci., Vol. 56, No. 4, 2083-2090, 2009.

    3. Giroldo, Jr., J. and M. Bellodi, "Drain leakage current in MuGFETs at high temperatures," ECS Trans., Vol. 28, No. 4, 1169, 2010.

    4. Sampedro, C., F. Gámiz, A. Godoy, R. Valín, A. García-Loureiro, and F. G. Ruiz, "Multi-subband Monte Carlo study of device orientation effects in ultra-short channel DGSOI," Solid-State Electron., Vol. 54, No. 2, 131-136, 2010.

    5. Mikki, S. M. and A. A. Kishk, "A symmetry-based formalism for the electrodynamics of nanotubes," Progress In Electromagnetics Research, Vol. 86, 111-134, 2008.

    6. Mathew, L., Y. Du, A. V.-Y. Thean, M. Sadd, A. Vandooren, C. Parker, T. Stephens, R. Mora, R. Rai, M. Zavala, D. Sing, S. Kalpat, J. Hughes, R. Shimer, S. Jallepalli, G. Workman, W. Zhang, J. G. Fossum, B. E. White, B.-Y. Nguyen, and J. Mogab, "CMOS vertical multiple independent gate field effect transistor (MIGFET)," IEEE SOI Conference, 187-189, 2004.

    7. Mathew, L., et al., "Multiple independent gate field effect transistor (MIGFET) multi-Fin RF mixer architecture, three independent gates (MIGFET-T) operation and temperature characteristics," IEEE VLSI Technology, 200-201, 2005.

    8. Baviskar, P., S. Jain, and P. Vinchurkar, "Nano scale soi mosfet structures and study of performance factors," Int. J. Comput. Appl., Vol. 1, No. 28, 2010.

    9. Jagadesh Kumar, M. and G. V. Reddy, "Diminished short channel effects in nanoscale double-gate silicon-on-insulator metal-oxide-semiconductor field-effect-transistors due to induced back-gate step potential," Jpn. J. Appl. Phys., Vol. 44, No. 9A, 6508-6509, 2005.

    10. Hu, G., R. Liu, Z. Qiu, L. Wang, and T. Tang, "Quantum mechanical effects on the threshold voltage of double-gate metal-oxide-semiconductor field-effect transistors," Jpn. J. Appl. Phys., Vol. 49, 034001, 2010.

    11. Gong, J. and P. C. H. Chan, "Linearity study of multiple independent gate field effect transistor (MIGFET) under symmetric and asymmetric operations," Solid-State Electron., Vol. 52, No. 2, 259-263, 2008.

    12. Hamed, H. F. A., S. Kaya, and J. A. Starzyk, "Use of nano-scale double-gate MOSFETs in low-power tunable current mode analog circuits," Analog. Integr. Circ. S., Vol. 54, No. 3, 211-217, 2008.

    13. Munteanu, D., M. Moreau, and J. L. Autran, "A compact model for the ballistic subthreshold current in ultra-thin independent double-gate MOSFETs," Mol. Simulat., Vol. 35, No. 6, 491-497, 2009.

    14. Jiménez, D., J. J. Sáenz, B. Iñíquez, J. Suñé, L. F. Marsal, and J. Pallarès, "Unified compact model for the ballistic quantum wire and quantum well metal-oxide-semiconductor field-effect-transistor," J. Appl. Phys., Vol. 94, No. 2, 1061-1068, 2003.

    15. Moreno, E., J. B. Roldán, F. G. Ruiz, D. Barrera, A. Godoy, and F. Gámiz, "An analytical model for square GAA MOSFETs including quantum effects," Solid-State Electron., Vol. 54, No. 11, 1463-1469, 2010.

    16. Chaisantikulwat, W., M. Mouis, G. Ghibaudo, S. Cristoloveanu, J. Widiez, M. Vinet, and S. Deleonibus, "Experimental evidence of mobility enhancement in short-channel ultra-thin body double-gate MOSFETs by magnetoresistance technique," Solid-State Electron., Vol. 51, No. 11-12, 1494-1499, 2007.

    17. Shrivastava, M., M. S. Baghini, A. B. Sachid, D. K. Sharma, and V. R. Rao, "A novel and robust approach for common mode feedback using IDDG FinFET," IEEE Trans. Electron Devices, Vol. 55, No. 11, 3274-3282, 2008.

    18. Nakajima, S., N. Kuwata, N. Shiga, K. Otobe, K. Matsuzaki, T. Sekiguchi, and H. Hayashi, "Characterization of double pulse-doped channel GaAs MESFETs," IEEE Trans. Electron Devices, Vol. 14, No. 3, 146-148, 1993.

    19. Roberts, J. M., J. J. Harris, N. J. Woods, and M. Hopkinson, "Investigation of delta-doped quantum wells for power FET applications," Superlattice Microst., Vol. 23, No. 2, 187-190, 1998.

    20. Kao, M. J., W. C. Hsu, R. T. Hsu, Y. H. Wu, and T. Y. Lin, "Characteristics of graded-like multiple-delta-doped GaAs field effect transistors," Appl. phys. Lett., Vol. 66, No. 19, 2505, 1995.

    21. Oubram, O. and L. M. Gaggero-Sager, "Transport properties of delta doped field effect transistor," Progress In Electromagnetics Research Letters, Vol. 2, 81-87, 2008.

    22. Gaggero-Sager, L. M. and R. Pérez-Alvarez, "A simple model for delta-doped field-effect transistor electronic states," J. Appl. Phys., Vol. 78, No. 7, 4566-4569, 1995.

    23. Oubram, O. and L. M. Gaggero-Sager, "Relative mobility and relative conductivity in ALD-FET (atomic layer doped-field effect transistor) in GaAs," PIERS Proceedings, 1186-1190, Beijing, China, March 23-27, 2009.

    24. Martínez-Orazco, J. C., L. M. Gaggero-Sager, and S. J. Vlaev, "Differential capacitance as a method of determining the presence of a quasi-electronic gas bidemensional," Solid-State Electron., Vol. 48, No. 12, 2277-2280, 2004.

    25. Martínez-Orazco, J. C., L. M. Gaggero-Sager, and S. J. Vlaev, "A Simple model for diffential capacitance profile in the atomic layer doped field effect transistor (ALD-FET) in GaAs," Mat. Sci. Eng. B-solid, Vol. 84, No. 3, 155-158, 2001.

    26. Chakhnakia, Z. D., L. V. Khvedelidze, N. P. Khuchua, R. G. Melkadze, G. Peradze, and T. B. Sakharova, "AlGaAs-GaAs heterostructure δ-doped field effect transistor (δ-FET)," Proc. SPIE, Vol. 5401, 354-360, 2004.

    27. Bènière, F., R. Chaplain, M. Gauneau, V. Redd, and A. Régrény, "Delta-doping in diffusion studies," J. Phys. III France 3, Vol. 3, No. 12, 2165-2171, 1993.

    28. Schubert, E. F., A. Fischer, and K. Ploog, "The delta-doped field-effect transistor (δ-FET)," IEEE Trans. Electron Devices, Vol. 33, No. 5, 625-632, 1986.

    29. Chen, X. and B. Nabet, "A closed-form expression to analyze electronic properties in delta-doped heterostructures," Solid-State Electron., Vol. 48, No. 12, 2321-2327, 2004.

    30. Ozturk, E., "Effect of magnetic field on a p-type d-doped GaAs layer," Chinese Phys. Lett., Vol. 27, No. 7, 077302, 2010.

    31. Ozturk, E., "Optical intersubband transitions in double Si d-doped GaAs under an applied magnetic field," Superlattices and Microstructures, Vol. 46, No. 5, 752-759, 2009.

    32. Ozturk, E., M. K. Bahar, and I. Sokmen, "Subband structure of p-type δ-doped GaAs as dependent on the acceptor concentration and the layer thickness," Eur. Phys. J. Appl. Phys., Vol. 41, No. 3, 195-200, 2008.

    33. Rhoderick, E. H. and R. H. Williams, Metal-semiconductor Contacts, Clarendon Press, Oxford, 1988.

    34. Rodríguez-Vargas, I., L. M. Gaggero-Sager, and V. R. Velasco, "Thomas-Fermi-Dirac theory of the hole gas of a double p-type delta-doped GaAs quantum wells," Surf. Sci., Vol. 537, No. 1, 75-83, 2003.

    35. Samuel, E. P. and D. S. Patil, "Analysis of wavefunction distribution in quantum well biased laser diode using transfer matrix method," Progress In Electromagnetics Research Letters, Vol. 1, 119-128, 2008.

    36. Liu, C.-C., Y.-H. Chang, T.-J. Yang, and C.-J. Wu, "Narrowband filter in a heterostructured multilayer containing ultrathin metalic films," Progress In Electromagnetics Research, Vol. 96, 329-346, 2009.

    37. Talele, K. and D. S. Patil, "Analysis of wave function, energy and transmission coefficients in GaN/AlGaN superlattice nanostructures," Progress In Electromagnetics Research, Vol. 81, 237-252, 2008.