Vol. 110

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2010-11-10

Transport and Electronic Properties of Two Dimensional Electron Gas in Delta-Migfet in GaAs

By Outmane Oubram, Luis Manuel Gaggero-Sager, Ali Bassam, and German A. Luna Acosta
Progress In Electromagnetics Research, Vol. 110, 59-80, 2010
doi:10.2528/PIER10081306

Abstract

The objective of this work is to analyze electronic transport phenomena, due to ionized impurity scattering in δ-MIGFET (Delta-Multiple Independent Gate Field Effect Transistor). In this work, we report theoretical results for electronic transport in a delta-MIGFET using the device electronic structure and analytical expression of mobility and conductivity. The results show that the analytical mobility and conductivity are a good way to analyze transport in this device. We find the relative mobility as a linear and increasing function in different modes; also, we find transconductance as an almost flat function in all the evaluated interval. Finally, we analyze the differential capacitance and resistivity, and we report regions where this device is operating in digital and analogue mode. These regions are delimited in terms of intrinsic and extrinsic parameters of this device in symmetrical mode.

Citation


Outmane Oubram, Luis Manuel Gaggero-Sager, Ali Bassam, and German A. Luna Acosta, "Transport and Electronic Properties of Two Dimensional Electron Gas in Delta-Migfet in GaAs ," Progress In Electromagnetics Research, Vol. 110, 59-80, 2010.
doi:10.2528/PIER10081306
http://jpier.org/PIER/pier.php?paper=10081306

References


    1. Kimura, S., D. Hisamoto, and N. Sugii, "Prospect of Si semiconductor devices in nanometer era," Hitachi Review, Vol. 54, No. 1, 2-8, 2005.

    2. Munteanu, D. and J. L. Autran, "3-D simulation analysis of bipolar amplification in planar double-gate and FinFET with independent gates," IEEE Trans. Nucl. Sci., Vol. 56, No. 4, 2083-2090, 2009.
    doi:10.1109/TNS.2009.2016343

    3. Giroldo, Jr., J. and M. Bellodi, "Drain leakage current in MuGFETs at high temperatures," ECS Trans., Vol. 28, No. 4, 1169, 2010.

    4. Sampedro, C., F. Gámiz, A. Godoy, R. Valín, A. García-Loureiro, and F. G. Ruiz, "Multi-subband Monte Carlo study of device orientation effects in ultra-short channel DGSOI," Solid-State Electron., Vol. 54, No. 2, 131-136, 2010.
    doi:10.1016/j.sse.2009.12.007

    5. Mikki, S. M. and A. A. Kishk, "A symmetry-based formalism for the electrodynamics of nanotubes," Progress In Electromagnetics Research, Vol. 86, 111-134, 2008.
    doi:10.2528/PIER08081704

    6. Mathew, L., Y. Du, A. V.-Y. Thean, M. Sadd, A. Vandooren, C. Parker, T. Stephens, R. Mora, R. Rai, M. Zavala, D. Sing, S. Kalpat, J. Hughes, R. Shimer, S. Jallepalli, G. Workman, W. Zhang, J. G. Fossum, B. E. White, B.-Y. Nguyen, and J. Mogab, "CMOS vertical multiple independent gate field effect transistor (MIGFET)," IEEE SOI Conference, 187-189, 2004.

    7. Mathew, L., et al., "Multiple independent gate field effect transistor (MIGFET) multi-Fin RF mixer architecture, three independent gates (MIGFET-T) operation and temperature characteristics," IEEE VLSI Technology, 200-201, 2005.

    8. Baviskar, P., S. Jain, and P. Vinchurkar, "Nano scale soi mosfet structures and study of performance factors," Int. J. Comput. Appl., Vol. 1, No. 28, 2010.

    9. Jagadesh Kumar, M. and G. V. Reddy, "Diminished short channel effects in nanoscale double-gate silicon-on-insulator metal-oxide-semiconductor field-effect-transistors due to induced back-gate step potential," Jpn. J. Appl. Phys., Vol. 44, No. 9A, 6508-6509, 2005.
    doi:10.1143/JJAP.44.6508

    10. Hu, G., R. Liu, Z. Qiu, L. Wang, and T. Tang, "Quantum mechanical effects on the threshold voltage of double-gate metal-oxide-semiconductor field-effect transistors," Jpn. J. Appl. Phys., Vol. 49, 034001, 2010.
    doi:10.1143/JJAP.49.034001

    11. Gong, J. and P. C. H. Chan, "Linearity study of multiple independent gate field effect transistor (MIGFET) under symmetric and asymmetric operations," Solid-State Electron., Vol. 52, No. 2, 259-263, 2008.
    doi:10.1016/j.sse.2007.08.010

    12. Hamed, H. F. A., S. Kaya, and J. A. Starzyk, "Use of nano-scale double-gate MOSFETs in low-power tunable current mode analog circuits," Analog. Integr. Circ. S., Vol. 54, No. 3, 211-217, 2008.
    doi:10.1007/s10470-008-9134-4

    13. Munteanu, D., M. Moreau, and J. L. Autran, "A compact model for the ballistic subthreshold current in ultra-thin independent double-gate MOSFETs," Mol. Simulat., Vol. 35, No. 6, 491-497, 2009.
    doi:10.1080/08927020902801548

    14. Jiménez, D., J. J. Sáenz, B. Iñíquez, J. Suñé, L. F. Marsal, and J. Pallarès, "Unified compact model for the ballistic quantum wire and quantum well metal-oxide-semiconductor field-effect-transistor," J. Appl. Phys., Vol. 94, No. 2, 1061-1068, 2003.
    doi:10.1063/1.1582557

    15. Moreno, E., J. B. Roldán, F. G. Ruiz, D. Barrera, A. Godoy, and F. Gámiz, "An analytical model for square GAA MOSFETs including quantum effects," Solid-State Electron., Vol. 54, No. 11, 1463-1469, 2010.
    doi:10.1016/j.sse.2010.05.032

    16. Chaisantikulwat, W., M. Mouis, G. Ghibaudo, S. Cristoloveanu, J. Widiez, M. Vinet, and S. Deleonibus, "Experimental evidence of mobility enhancement in short-channel ultra-thin body double-gate MOSFETs by magnetoresistance technique," Solid-State Electron., Vol. 51, No. 11-12, 1494-1499, 2007.
    doi:10.1016/j.sse.2007.09.017

    17. Shrivastava, M., M. S. Baghini, A. B. Sachid, D. K. Sharma, and V. R. Rao, "A novel and robust approach for common mode feedback using IDDG FinFET," IEEE Trans. Electron Devices, Vol. 55, No. 11, 3274-3282, 2008.
    doi:10.1109/TED.2008.2004475

    18. Nakajima, S., N. Kuwata, N. Shiga, K. Otobe, K. Matsuzaki, T. Sekiguchi, and H. Hayashi, "Characterization of double pulse-doped channel GaAs MESFETs," IEEE Trans. Electron Devices, Vol. 14, No. 3, 146-148, 1993.
    doi:10.1109/55.215139

    19. Roberts, J. M., J. J. Harris, N. J. Woods, and M. Hopkinson, "Investigation of delta-doped quantum wells for power FET applications," Superlattice Microst., Vol. 23, No. 2, 187-190, 1998.
    doi:10.1006/spmi.1996.0242

    20. Kao, M. J., W. C. Hsu, R. T. Hsu, Y. H. Wu, and T. Y. Lin, "Characteristics of graded-like multiple-delta-doped GaAs field effect transistors," Appl. phys. Lett., Vol. 66, No. 19, 2505, 1995.
    doi:10.1063/1.113148

    21. Oubram, O. and L. M. Gaggero-Sager, "Transport properties of delta doped field effect transistor," Progress In Electromagnetics Research Letters, Vol. 2, 81-87, 2008.
    doi:10.2528/PIERL07122810

    22. Gaggero-Sager, L. M. and R. Pérez-Alvarez, "A simple model for delta-doped field-effect transistor electronic states," J. Appl. Phys., Vol. 78, No. 7, 4566-4569, 1995.
    doi:10.1063/1.359800

    23. Oubram, O. and L. M. Gaggero-Sager, "Relative mobility and relative conductivity in ALD-FET (atomic layer doped-field effect transistor) in GaAs," PIERS Proceedings, 1186-1190, Beijing, China, March 23-27, 2009.

    24. Martínez-Orazco, J. C., L. M. Gaggero-Sager, and S. J. Vlaev, "Differential capacitance as a method of determining the presence of a quasi-electronic gas bidemensional," Solid-State Electron., Vol. 48, No. 12, 2277-2280, 2004.
    doi:10.1016/j.sse.2004.04.010

    25. Martínez-Orazco, J. C., L. M. Gaggero-Sager, and S. J. Vlaev, "A Simple model for diffential capacitance profile in the atomic layer doped field effect transistor (ALD-FET) in GaAs," Mat. Sci. Eng. B-solid, Vol. 84, No. 3, 155-158, 2001.
    doi:10.1016/S0921-5107(00)00583-3

    26. Chakhnakia, Z. D., L. V. Khvedelidze, N. P. Khuchua, R. G. Melkadze, G. Peradze, and T. B. Sakharova, "AlGaAs-GaAs heterostructure δ-doped field effect transistor (δ-FET)," Proc. SPIE, Vol. 5401, 354-360, 2004.
    doi:10.1117/12.558432

    27. Bènière, F., R. Chaplain, M. Gauneau, V. Redd, and A. Régrény, "Delta-doping in diffusion studies," J. Phys. III France 3, Vol. 3, No. 12, 2165-2171, 1993.
    doi:10.1051/jp3:1993259

    28. Schubert, E. F., A. Fischer, and K. Ploog, "The delta-doped field-effect transistor (δ-FET)," IEEE Trans. Electron Devices, Vol. 33, No. 5, 625-632, 1986.
    doi:10.1109/T-ED.1986.22543

    29. Chen, X. and B. Nabet, "A closed-form expression to analyze electronic properties in delta-doped heterostructures," Solid-State Electron., Vol. 48, No. 12, 2321-2327, 2004.
    doi:10.1016/j.sse.2004.04.011

    30. Ozturk, E., "Effect of magnetic field on a p-type d-doped GaAs layer," Chinese Phys. Lett., Vol. 27, No. 7, 077302, 2010.
    doi:10.1088/0256-307X/27/7/077302

    31. Ozturk, E., "Optical intersubband transitions in double Si d-doped GaAs under an applied magnetic field," Superlattices and Microstructures, Vol. 46, No. 5, 752-759, 2009.
    doi:10.1016/j.spmi.2009.07.013

    32. Ozturk, E., M. K. Bahar, and I. Sokmen, "Subband structure of p-type δ-doped GaAs as dependent on the acceptor concentration and the layer thickness," Eur. Phys. J. Appl. Phys., Vol. 41, No. 3, 195-200, 2008.
    doi:10.1051/epjap:2008018

    33. Rhoderick, E. H. and R. H. Williams, Metal-semiconductor Contacts, Clarendon Press, Oxford, 1988.

    34. Rodríguez-Vargas, I., L. M. Gaggero-Sager, and V. R. Velasco, "Thomas-Fermi-Dirac theory of the hole gas of a double p-type delta-doped GaAs quantum wells," Surf. Sci., Vol. 537, No. 1, 75-83, 2003.
    doi:10.1016/S0039-6028(03)00546-6

    35. Samuel, E. P. and D. S. Patil, "Analysis of wavefunction distribution in quantum well biased laser diode using transfer matrix method," Progress In Electromagnetics Research Letters, Vol. 1, 119-128, 2008.
    doi:10.2528/PIERL07111902

    36. Liu, C.-C., Y.-H. Chang, T.-J. Yang, and C.-J. Wu, "Narrowband filter in a heterostructured multilayer containing ultrathin metalic films," Progress In Electromagnetics Research, Vol. 96, 329-346, 2009.
    doi:10.2528/PIER09090704

    37. Talele, K. and D. S. Patil, "Analysis of wave function, energy and transmission coefficients in GaN/AlGaN superlattice nanostructures," Progress In Electromagnetics Research, Vol. 81, 237-252, 2008.
    doi:10.2528/PIER08011102