Vol. 106
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-07-28
Estimation for Small-Scale Fading Characteristics of RF Wireless Link Under Railway Communication Environment Using Integrative Modeling Technique.
By
Progress In Electromagnetics Research, Vol. 106, 395-417, 2010
Abstract
The small-scale fading behavior in common wireless communication systems can be predicted by a series of propagation models. Although these types of models are feasible and effective for the situations of transmitting/receiving (Tx/Rx) antennas in relatively open surrounding environments, they are unable to address the coupling between the antenna and environment. In order to overcome this difficulty, a full-wave numerical method is applied in terms of the advantage in considering the interaction between complicated environments and the Tx/Rx antennas, and it can take into account the effect of the interaction on signals. In this paper, an integrative modeling technique involving FDTD method, two-path propagation model and multi-path statistical distribution model is presented, which combines the deterministic and statistical methods. For achieving reliable communication especially in high-speed railway environment, high sampling rate and adequate sampling points are needed for analyzing the propagation properties of the radio frequency (RF) link. This can be easily achieved by the integrative modeling technique, and the output voltage and current of train antenna under the illumination of base-station (BS) antenna along the railway can be given in detail. Results obtained from the integrative simulation for three different multi-path statistical distribution models are presented and analyzed.
Citation
Shi Pu, Jun-Hong Wang, and Zhan Zhang, "Estimation for Small-Scale Fading Characteristics of RF Wireless Link Under Railway Communication Environment Using Integrative Modeling Technique.," Progress In Electromagnetics Research, Vol. 106, 395-417, 2010.
doi:10.2528/PIER10042806
References

1. Pu, S. and J.-H. Wang, "Research on the receiving and radiating characteristics of antennas on high-speed train using integrative modeling technique," Proc. 11th Asia Pacific Microwave Conference, 1072-1075, 2009.

2. Iskander, M. F. and Z. Yun, "Propagation prediction models for wireless communication systems," IEEE Trans. Microwave Theory Tech., Vol. 50, No. 3, 662-673, 2002.
doi:10.1109/22.989951

3., Sarkar, T. K., Z. Ji, K. Kim, A. Medouri, and M. Salazar-Palma, "A survey of various propagation models for mobile communication," IEEE Antennas Propag. Mag., Vol. 45, No. 3, 51-82, 2003.
doi:10.1109/MAP.2003.1232163

4. Kara, A. and E. Yazgan, "Modelling of shadowing loss due to huge non-polygonal structures in urban radio propagation," Progress In Electromagnetics Research B, Vol. 6, 123-134, 2008.
doi:10.2528/PIERB08031209

5. Okumura, Y., E. Ohmori, T. Kawano, and K. Fukuda, "Field strength variability in VHF and UHF land mobile service," Rev. Elect. Comm. Lab., Vol. 16, No. 9-10, 825-873, 1968.

6. Landstorfer, F. M., "Wave propagation models for the planning of mobile communication networks," Proc. 29th European Microwave Conference, 1-6, 1999.
doi:10.1109/EUMA.1999.338327

7. El-Sallabi, H. M. and P. Vainikainen, "Radio wave propagation in perpendicular streets of urban street grid for microcellular communications. Part I: Channel modeling," Progress In Electromagnetics Research, Vol. 40, 229-254, 2003.
doi:10.2528/PIER02112502

8. Giampaolo, E. Di and F. Bardati, "A projective approach to electromagnetic propagation in complex environments," Progress In Electromagnetics Research B, Vol. 13, 357-383, 2009.
doi:10.2528/PIERB09012904

9. Meng, Y. S., Y. H. Lee, and B. C. Ng, "Study of propagation loss prediction in forest environment," Progress In Electromagnetics Research B, Vol. 17, 117-133, 2009.
doi:10.2528/PIERB09071901

10. Ikegami, F., S. Yoshida, T. Takeuchi, and M. Umehira, "Propagation factors controlling mean field strength on urban streets," IEEE Trans. Antennas Propag., Vol. 32, No. 8, 822-829, 1984.
doi:10.1109/TAP.1984.1143419

11. Hoppe, R., P. Wertz, F. M. Landstorfer, and G. Wolfle, "Advanced ray-optical wave propagation modelling for urban and indoor scenarios including wideband properties," Euro. Trans. Telecomms., Vol. 14, No. 1, 61-69, 2003.

12. Paran, K. and N. Noori, "Tuning of the propagation model itu-R P.1546 recommendation," Progress In Electromagnetics Research B, Vol. 8, 243-255, 2008.
doi:10.2528/PIERB08062201

13. Hattori, T., K. Abe, and K. Abe, "Analyses of propagation characteristics in future railway communication systems using 25 GHz band radio," Proc. 49th IEEE Veh. Tech. Conf., 2288-2292, 1999.

14. Nakamura, K., K. Kawasaki, and M. Shindo, "Development of methods for the calculation of radio propagation characteristics in the railway environment," Quarterly Report of Railway Technical Research Institute, Vol. 43, No. 4, 182-186, 2002.

15. Chen, Y., Z. Zhang, L. Hu, and P. B. Rapajic, "Geometrybased statistical model for radio propagation in rectangular office buildings," Progress In Electromagnetics Research B, Vol. 17, 187-212, 2009.
doi:10.2528/PIERB09080603

16. Taga, T., "Analysis for mean effective gain of mobile antennas in land mobile radio environments," IEEE Trans. Veh. Tech., Vol. 39, No. 2, 117-131, 1990.
doi:10.1109/25.54228

17. Chen, Y., Z. Zhang, and T. Qin, "Geometrically based channel model for indoor radio propagation with directional antennas," Progress In Electromagnetics Research B, Vol. 20, 109-124, 2010.
doi:10.2528/PIERB10022205

18. Chou, H.-T. and H.-T. Hsu, "Hybridization of simulation codes based on numerical high and low frequency techniques for the e±cient antenna design in the presence of electrically large and complex structures," Progress In Electromagnetics Research, Vol. 78, 173-187, 2008.
doi:10.2528/PIER07091104

19. Hsu, H.-T., F.-Y. Kuo, and H.-T. Chou, "Convergence study of current sampling profiles for antenna design in the presence of electrically large and complex platforms using FIT-UTD hybridization approach," Progress In Electromagnetics Research, Vol. 99, 195-209, 2009.
doi:10.2528/PIER09092404

20. Pu, S., J.-H. Wang, and Z. Li, "Integrative modeling and analyses of the wireless link for communication system in railway environment," Proc. 8th International Symposium on Antennas, Propagation and EM Theory, 1322-1325, 2008.

21. Sklar, B., "Rayleigh fading channels in mobile digital communication systems. Part I: Characterization," IEEE Commun. Mag., Vol. 35, No. 9, 136-146, 1997.
doi:10.1109/35.620535

22. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propag., Vol. 14, No. 3, 302-307, 1966.
doi:10.1109/TAP.1966.1138693

23. Gedney, S. D., "An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices," IEEE Trans. Antennas Propag., Vol. 44, No. 12, 1630-1639, 1996.
doi:10.1109/8.546249

24. Maloney, J. G., K. L. Shlager, and G. S. Smith, "A simple FDTD model for transient excitation of antennas by transmission lines," IEEE Trans. Antennas Propag., Vol. 42, No. 2, 289-292, 1994.
doi:10.1109/8.277228

25. Harrington, R. F., Field Computation by Moment Methods, Macmillan, New York, 1968.

26. Wang, J.-H and H. Zhang, "Velocity compensated coplanar wave guide bend for odd-mode suppression," Microwave Opt. Technol. Lett., Vol. 50, No. 5, 1201-1204, 2008.
doi:10.1002/mop.23315

27. Zhang, H., J.-H. Wang, and W.-Y. Liang, "Study on the applicability of extracted distributed circuit parameters of non-uniform transmission lines by equivalent circuit method," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 5-6, 839-848, 2008.
doi:10.1163/156939308784159444

28. Yarkony, N. and N. Blaunstein, "Prediction of propagation characteristics in indoor radio communication environments," Progress In Electromagnetics Research, Vol. 59, 151-174, 2006.
doi:10.2528/PIER05090801

29. Clarke, R. H., "A statistical theory of mobile-radio reception," Bell Syst. Tech. J., Vol. 47, No. 6, 957-1000, 1968.