Vol. 103

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2010-04-28

Polar Format Algorithm for Spotlight Bistatic SAR with Arbitrary Geometry Configuration

By Jinping Sun, Shiyi Mao, Guohua Wang, and Wen Hong
Progress In Electromagnetics Research, Vol. 103, 323-338, 2010
doi:10.2528/PIER10030703

Abstract

This paper presents an effective Polar Format Algorithm (PFA) for spotlight bistatic synthetic aperture radar (SAR) with arbitrary geometry configuration. Nonuniform interpolation and resampling are adopted when converting raw data from polar coordinates to Cartesian coordinates according to the characteristics of raw data samples in spatial frequency space. Thus, the proposed algorithm avoids both rotation transformation and the calculation of azimuth compensation factor and thereby avoids the corresponding approximate error appeared in the conventional PFA. Meanwhile, the proposed algorithm inherits the character of decomposing 2-D interpolation to two 1-D interpolations from conventional PFA algorithm applied in monostatic SAR imaging. Therefore, the processing flow, computation efficiency and performance of the proposed algorithm are the same as those of conventional PFA for monostatic spotlight SAR. Point target simulations are provided to validate the proposed algorithm.

Citation


Jinping Sun, Shiyi Mao, Guohua Wang, and Wen Hong, "Polar Format Algorithm for Spotlight Bistatic SAR with Arbitrary Geometry Configuration," Progress In Electromagnetics Research, Vol. 103, 323-338, 2010.
doi:10.2528/PIER10030703
http://jpier.org/PIER/pier.php?paper=10030703

References


    1. BenKassem, M. J., J. Saillard, and A. Khenchaf, "BISAR mapping I. Theory and modeling," Progress In Electromagnetics Research, Vol. 61, 39-65, 2006.
    doi:10.2528/PIER05092201

    2. BenKassem, M. J., J. Saillard, and A. Khenchaf, "BISAR mapping II. Treatment, simulation and theory and experimentation," Progress In Electromagnetics Research, Vol. 61, 67-87, 2006.
    doi:10.2528/PIER06012403

    3. Krieger, G. and A. Moreira, "Spaceborne bi- and multistatic SAR: Potentials and challenges," IEE Proc., Radar Sonar Navig., Vol. 153, No. 3, 184-198, 2006.
    doi:10.1049/ip-rsn:20045111

    4. Ender, J. and A step to bistatic SAR processing, Proc. of EUSAR, 356-359, 2004.

    5. Ender, J., I. Walterscheid, and A. Brenner, "New aspects of bistatic SAR: Processing and experiments," Proc. of IGARSS, 1758-1762, 2004.

    6. Walterscheid, I., J. Ender, A. Brenner, and O. Loffeld, "Bistatic SAR processing and experiments," IEEE Trans. Geosci. Remote Sens., Vol. 44, No. 10, 2710-2717, 2006.
    doi:10.1109/TGRS.2006.881848

    7. Dubois-Fernandez, P., H. Cantalloube, B. Vaizan, G. Krieger, R. Horn, M. Wendler, and V. Giroux, ONERA-DLR bistatic SAR campaign: Planning, data acquisition, and first analysis of bistatic scattering behaviour of natural and urban targets, IEE Proc., Radar Sonar Navig., Vol. 153, No. 3, 214-223, 2006.

    8. Yates, G., A. M. Horne, A. P. Blake, R. Middleton, and D. B. Andre, "Bistatic SAR image formation," IEE Proc. Radar Sonar Navig., Vol. 153, No. 3, 208-213, 2006.
    doi:10.1049/ip-rsn:20045091

    9. Marcos, J., P. Dekker, J. Mallorqui, A. Aguasca, and P. Prats, "SABRINA: A SAR bistatic receiver for interferometric application," IEEE Trans. Geosci. Remote Sens. Lett., Vol. 4, No. 2, 307-311, 2007.
    doi:10.1109/LGRS.2007.894144

    10. Ding, Y., D. C. Munson, and Jr., A fast back-projection algorithm for bistatic SAR imaging, IEEE International Conference on Image Processing, Vol. 2, 449-452, 2002.

    11. Loffeld, O., H. Nies, V. Peters, and S. Knedlik, "Models and useful relations for bistatic SAR," IEEE Trans. Geosci. Remote Sens., Vol. 42, No. 10, 2031-2038, 2004.
    doi:10.1109/TGRS.2004.835295

    12. Walterscheid, I., J. Ender, A. Brenner, and O. Loffeld, Bistatic SAR processing using an omega-k type algorithm, Proc. of IGARSS, Vol. 2, 1064-1067, 2005.

    13. Natroshvili, K., O. Loffeld, H. Nies, A. M. Ortiz, and S. Knedlik, "Focusing of general bistatic SAR confguration data With 2-D inverse scaled FFT," IEEE Trans. Geosci. Remote Sens., Vol. 44, No. 10, 2718-2727, 2006.
    doi:10.1109/TGRS.2006.872725

    14. Giroux, C., H. Cantalloube, and F. Daout, An Omega-K algorithm for SAR bistatic systems, Proc. of IGARSS, Vol. 2, 1060-1063, 2005.

    15. Qiu, X., D. Hu, and C. Ding, "An Omega-K algorithm with phase error compensation for bistatic SAR of a translational invariant case," IEEE Trans. Geosci. Remote Sens., Vol. 46, No. 8, 2224-2232, 2008.
    doi:10.1109/TGRS.2008.917497

    16. D'Aria, D., A. M. Guarnieri, and F. Rocca, "Focusing bistatic synthetic aperture radar using dip move out," IEEE Trans. Geosci. Remote Sens., Vol. 42, No. 7, 1362-1376, 2004.
    doi:10.1109/TGRS.2004.830166

    17. Sun, J., S. Mao, W. Hong, and G.Wang, "Extended exact transfer function algorithm for bistatic SAR of translational invariant case," Progress In Electromagnetics Research, Vol. 99, 89-108, 2009.
    doi:10.2528/PIER09091203

    18. Wong, F. H. and T. S. Yeo, "New applications of nonlinear chirp scaling in SAR data processing," IEEE Trans. Geosci. Remote Sens., Vol. 39, No. 5, 946-953, 2001.
    doi:10.1109/36.921412

    19. Neo, Y., F. Wong, and I. G. Cumming, "A two-dimensional spectrum for bistatic SAR processing using series reversion," IEEE Trans. Geosci. Remote Sens. Lett., Vol. 4, No. 2, 307-311, 2007.
    doi:10.1109/LGRS.2007.894144

    20. Bamler, R., F. Meyer, and W. Liebhart, "Processing of bistatic SAR data from quasi-stationary configurations," IEEE Trans. Geosci. Remote Sens., Vol. 45, No. 11, 3350-3358, 2007.
    doi:10.1109/TGRS.2007.895436

    21. Carrara, W. G., R. S. Goodman, and R. M. Majewaki, Spotlight Synthetic Aperture Radar: Signal Processing Algorithms, Artech House, Norwood, MA, 1995.

    22. Jakowatz, C. V., D. E. Wahl, D. C. Ghiglia, and P. A. Thompson, "Spotlight-mode Synthetic Aperture Radar: A Signal Processing Approach," Kluwer Academic Publishers, 1996.

    23. Rigling, B. D. and R. L. Moses, "Polar format algorithm for bistatic SAR," IEEE Transactions on Aerospace and Electronic Systems , Vol. 40, No. 4, 1147-1159, 2004.
    doi:10.1109/TAES.2004.1386870

    24. Yuan, Y., J. Sun, and S. Mao, "PFA algorithm for airborne spotlight SAR imaging with nonideal motions," IEE Proc., Radar Sonar Navig., Vol. 149, No. 4, 174-182, 2002.
    doi:10.1049/ip-rsn:20020493

    25. Chan, Y. K. and V. C. Koo, "An introduction to synthetic aperture radar (SAR)," Progress In Electromagnetics Research B, Vol. 2, 27-60, 2008.
    doi:10.2528/PIERB07110101

    26. Chan, Y. K., V. C. Koo, B.-K. Chung, and H.-T. Chuah, "Modi¯ed algorithm for real time SAR signal processing," Progress In Electromagnetics Research C, Vol. 1, 159-168, 2008.
    doi:10.2528/PIERC08021801

    27. Lim, T. S., C.-S. Lim, V. C. Koo, H.-T. Ewe, and H.-T. Chuah, "Autofocus algorithms performance evaluations using an integrated SAR product simulator and processor ," Progress In Electromagnetics Research B, Vol. 3, 315-329, 2008.
    doi:10.2528/PIERB07122101

    28. Lim, T. S., V. C. Koo, H.-T. Ewe, and H.-T. Chuah, "A SAR autofocus algorithm based on particle swarm optimization," Progress In Electromagnetics Research B, Vol. 1, 159-176, 2008.
    doi:10.2528/PIERB07102501

    29. Chan, Y. K. and S. Y. Lim, "Synthetic aperture radar (SAR) signal generation," Progress In Electromagnetics Research B, Vol. 1, 269-290, 2008.
    doi:10.2528/PIERB07102301

    30. Cumming, I. G. and F. Wong, Digital Processing of Synthetic Aperture Radar, Artech House, Norwood, MA, 2005.