Vol. 101

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Application of Double Zero Metamaterials as Radar Absorbing Materials for the Reduction of Radar Cross Section

By Homayoon Oraizi, Ali Abdolali, and Noushin Vaseghi
Progress In Electromagnetics Research, Vol. 101, 323-337, 2010


We introduce and investigate the applications of double zero (DZR) metamaterials (having the real parts of permittivity and permeability equal to zero) as radar absorbing materials (RAMs). We consider a perfectly electric conductor (PEC) plate covered by several layers of DZR metamaterial coatings under an oblique plane wave incidence of arbitrary polarization. Several analytical formulas are derived for the realization of zero reflection from such structures. The angle of reflection in the DZR metamaterials becomes complex, which leads to the dissociation of the constant amplitude and equiphase planes. Then several examples of the applications of DZR metamaterials (in nondispersive and dispersive conditions) as RAMs and zero reflection coatings are provided. The characteristics and parameters of the DZR metamaterial media are determined in each case. The method of least squares is used to optimize the DZR coatings for the minimization of reflected power, which uses the combination of genetic algorithm and conjugate gradient method (GA-CG) to benefit from their advantages and avert their short comings.


Homayoon Oraizi, Ali Abdolali, and Noushin Vaseghi, "Application of Double Zero Metamaterials as Radar Absorbing Materials for the Reduction of Radar Cross Section," Progress In Electromagnetics Research, Vol. 101, 323-337, 2010.


    1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 10, No. 4, 509-514, 1968.

    2. Marques, R., F. Martin, and M. Sorolla, Metamaterials with Negative Parameters Theory, Design, and Microwave Applications, Wiley, 2008.

    3. Caloz, C. and T. Itoh, Electromagnetic Metamaterials, Transmission Line Theory and Microwave Applications, IEEE Press, Wiley, Hoboken, NJ, 2005.

    4. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, No. 18, 4184-4187, 2000.

    5. Marques, R., F. Mesa, J. Martel, and F. Medina, "Comparative analysis of edge and broadside coupled split ring resonators for metamaterial design, theory and experiments," IEEE Trans. Antennas and Propagation, Vol. 51, 2572-2581, 2003.

    6. Silveirinha, M., P. A. Belov, and C. R. Simovski, "Ultimate limit of resolution of subwavelength imaging devices formed by metallic rods," Opt. Lett., Vol. 33, 1726-1728, 2008.

    7. Lai, A., C. Caloz, and T. Itoh, "Composite right/left-handed transmission line metamaterials," IEEE Microwave Magazine, Vol. 5, No. 3, 34-50, 2004.

    8. Chen, H., B. I. Wu, and J. A. Kong, "Review of electromagnetic theory in left-handed materials," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 15, 2137-2151, 2006.

    9. Engheta, N. and R. W. Ziolkowski, "A positive future for double negative metamaterials," IEEE Trans. Microwave Theory Tech., Vol. 53, No. 4, 1535-1556, 2005.

    10. Oraizi, H. and A. Abdolali, "Some aspects of radio wave propagation in double zero metamaterials having the real parts of epsilon and mu equal to zero," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 14-15, 1957-1968, 2009.

    11. Zhou, H., Z. Pei, S. Qu, S. Zhang, J. Wang, Q. Li, and Z. Xu, "A planar zero-index metamaterial fordirective emission," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 7, 953-962, 2009.

    12. Kong, J. A., "Electromagnetic wave interaction with stratified negative isotropic media," Progress In Electromagnetics Research, Vol. 35, 1-52, 2002.

    13. Oraizi, H. and A. Abdolali, "Analytical determination of zero reflection conditions for oblique incidence on multilayer planar structures," Proc. IEEE MMS Mediterranean. Microwave Symposium, 196-199, Damascus, Syria, 2008.

    14. Oraizi, H. and A. Abdolali, "Mathematical formulation for zero reflection from multilayer metamaterial structures an their notable applications," IET Microwaves, Antennas and Propagation Journal, Vol. 3, No. 6, 987-996, 2009.

    15. Kong, J. A., Theory of Electromagnetic Waves, EMW Pub., New York, 2005.

    16. Ishimaru, A., Electromagnetic Wave Propagation, Radiation, and Scattering, Nglewood Cliffs, Prentice Hall, 1991.

    17. Cory, H. and C. Zach, "Wave propagation in metamaterial multilayered structures," Microwave and Optical Technology Letters, Vol. 40, No. 6, 460-465, 2004.

    18. Ziolkowski, R. W. and E. Heyman, "Wave propagation in media having negative permittivity and permeability," Phys. Rev. E, Vol. 64, No. 5, 056625, 2001.

    19. Oraizi, H. and A. Abdolali, "Ultra wide band RCS optimization of multilayerd cylinderical structures for arbitrarily polarized incident plane waves," Progress In Electromagnetics Research, Vol. 78, 129-157, 2008.

    20. Sounas, D. L. and N. V. Kantartzis, "Systematic surface waves analysis at the interfaces of composite DNG/SNG media," Opt. Express, Vol. 17, No. 10, 8513-8524, 2009.

    21. Alu, A. and N. Engheta, "Pairing an epsilon-negative slab with a Mu-negative slab: Resonance, tunneling and transparency," IEEE Trans. Antennas and Propagation, Vol. 51, No. 10, 2558-2571, 2003.

    22. Vinoy, K. J. and R. M. Jha, Radar Absorbing Materials: From Theory to Design and Characterization, Kluwer Academic Publishers, Norwell, Massachusetts, 1996.

    23. Berenger, J. P., "A perfectly matched layer for the absorption of electromagneticwaves," Journal of Computational Physics, Vol. 114, 185-200, 1994.

    24. Ziolokowski, R. W., "The design of Maxwellian absorbers for numerical boundary conditions and for practical applications using engineered artificial materials," IEEE Trans. Antennas and Propagation, Vol. 45, No. 4, 656-671, 1997.

    25. Michielssen, E., J. M. Sajer, S. Ranjithan, and R. Mittra, "Design of lightweight, broad-band microwave absorbers using genetic algorithms," IEEE Trans. Microwave Theory Tech., Vol. 41, No. 67, 1024-1031, 1993.

    26. Oraizi, H. and A. Abdolali, "Combination of MLS, GA & CG for the reduction of RCS of multilayered cylindrical structures composed of dispersive metamaterials," Progress In Electromagnetic Research B, Vol. 3, 227-253, 2008.

    27. Xu, Z., W. Lin, and L. Kong, "Controllable absorbing of metamaterial at microwave," Progress In Electromagnetics Research, Vol. 69, 117-125, 2007.

    28. Mosallaei, H. and Y. Rahmat-Samii, "RCS reduction of canonical targets using genetic algorithm synthesized RAM," IEEE Trans. Antennas and Propagation, Vol. 48, No. 10, 1594-1606, 2000.

    29. Oraizi, H. and A. Abdolali, "Design and optimization of planar multilayer antireflection metamaterial coatings at Ku band under circularly polarized oblique plane wave incidence," Progress In Electromagnetics Research C, Vol. 3, 1-18, 2008.

    30. Pendry, J. B. and A. MacKinnon, "Calculation of photon dispersion," Phys. Rev. Lett., Vol. 69, No. 3, 2772-2775, 1992.

    31. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructure," Phys. Rev. Lett., Vol. 76, No. 25, 4773-4776, 1996.

    32. Manzanares-Martinez, J. and J. Gaspar-Armenta, "Direct integration of the constitutive relations for modeling dispersive metamaterials using the finite difference time-domain technique," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2297-2310, 2007.

    33. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low-frequency plasmons in thin wire structures," Phys. Condens. Matter, Vol. 10, 4785-4809, 1998.

    34. Sabah, C. and S. Uckun, "Multilayer system of Lorentz/Drude type metamaterials with dielectric slabs and its application to electromagnetic filters," Progress In Electromagnetics Research, Vol. 91, 349-364, 2009.

    35. Rahmat-Samii, Y. and E. Michielssen, Electromagnetic Optimization by Genetic Algorithms, Wiley, New York, 1999.

    36. Oraizi, H., "Application of the method of least squaresto electromagnetic engineering problems," IEEE Antenna and Propagation Magazine, Vol. 48, No. 1, 50-75, 2006.