Vol. 101

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2010-02-09

Application of Double Zero Metamaterials as Radar Absorbing Materials for the Reduction of Radar Cross Section

By Homayoon Oraizi, Ali Abdolali, and Noushin Vaseghi
Progress In Electromagnetics Research, Vol. 101, 323-337, 2010
doi:10.2528/PIER10010603

Abstract

We introduce and investigate the applications of double zero (DZR) metamaterials (having the real parts of permittivity and permeability equal to zero) as radar absorbing materials (RAMs). We consider a perfectly electric conductor (PEC) plate covered by several layers of DZR metamaterial coatings under an oblique plane wave incidence of arbitrary polarization. Several analytical formulas are derived for the realization of zero reflection from such structures. The angle of reflection in the DZR metamaterials becomes complex, which leads to the dissociation of the constant amplitude and equiphase planes. Then several examples of the applications of DZR metamaterials (in nondispersive and dispersive conditions) as RAMs and zero reflection coatings are provided. The characteristics and parameters of the DZR metamaterial media are determined in each case. The method of least squares is used to optimize the DZR coatings for the minimization of reflected power, which uses the combination of genetic algorithm and conjugate gradient method (GA-CG) to benefit from their advantages and avert their short comings.

Citation


Homayoon Oraizi, Ali Abdolali, and Noushin Vaseghi, "Application of Double Zero Metamaterials as Radar Absorbing Materials for the Reduction of Radar Cross Section," Progress In Electromagnetics Research, Vol. 101, 323-337, 2010.
doi:10.2528/PIER10010603
http://jpier.org/PIER/pier.php?paper=10010603

References


    1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 10, No. 4, 509-514, 1968.
    doi:10.1070/PU1968v010n04ABEH003699

    2. Marques, R., F. Martin, and M. Sorolla, Metamaterials with Negative Parameters Theory, Design, and Microwave Applications, Wiley, 2008.

    3. Caloz, C. and T. Itoh, Electromagnetic Metamaterials, Transmission Line Theory and Microwave Applications, IEEE Press, Wiley, Hoboken, NJ, 2005.

    4. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, No. 18, 4184-4187, 2000.
    doi:10.1103/PhysRevLett.84.4184

    5. Marques, R., F. Mesa, J. Martel, and F. Medina, "Comparative analysis of edge and broadside coupled split ring resonators for metamaterial design, theory and experiments," IEEE Trans. Antennas and Propagation, Vol. 51, 2572-2581, 2003.
    doi:10.1109/TAP.2003.817562

    6. Silveirinha, M., P. A. Belov, and C. R. Simovski, "Ultimate limit of resolution of subwavelength imaging devices formed by metallic rods," Opt. Lett., Vol. 33, 1726-1728, 2008.
    doi:10.1109/MMW.2004.1337766

    7. Lai, A., C. Caloz, and T. Itoh, "Composite right/left-handed transmission line metamaterials," IEEE Microwave Magazine, Vol. 5, No. 3, 34-50, 2004.
    doi:10.1163/156939306779322585

    8. Chen, H., B. I. Wu, and J. A. Kong, "Review of electromagnetic theory in left-handed materials," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 15, 2137-2151, 2006.
    doi:10.1109/TMTT.2005.845188

    9. Engheta, N. and R. W. Ziolkowski, "A positive future for double negative metamaterials," IEEE Trans. Microwave Theory Tech., Vol. 53, No. 4, 1535-1556, 2005.
    doi:10.1163/156939309789932421

    10. Oraizi, H. and A. Abdolali, "Some aspects of radio wave propagation in double zero metamaterials having the real parts of epsilon and mu equal to zero," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 14-15, 1957-1968, 2009.
    doi:10.1163/156939309788355289

    11. Zhou, H., Z. Pei, S. Qu, S. Zhang, J. Wang, Q. Li, and Z. Xu, "A planar zero-index metamaterial fordirective emission," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 7, 953-962, 2009.
    doi:10.2528/PIER01082101

    12. Kong, J. A., "Electromagnetic wave interaction with stratified negative isotropic media," Progress In Electromagnetics Research, Vol. 35, 1-52, 2002.

    13. Oraizi, H. and A. Abdolali, "Analytical determination of zero reflection conditions for oblique incidence on multilayer planar structures," Proc. IEEE MMS Mediterranean. Microwave Symposium, 196-199, Damascus, Syria, 2008.
    doi:10.1049/iet-map.2008.0281

    14. Oraizi, H. and A. Abdolali, "Mathematical formulation for zero reflection from multilayer metamaterial structures an their notable applications," IET Microwaves, Antennas and Propagation Journal, Vol. 3, No. 6, 987-996, 2009.

    15. Kong, J. A., Theory of Electromagnetic Waves, EMW Pub., New York, 2005.

    16. Ishimaru, A., Electromagnetic Wave Propagation, Radiation, and Scattering, Nglewood Cliffs, Prentice Hall, 1991.
    doi:10.1002/mop.20005

    17. Cory, H. and C. Zach, "Wave propagation in metamaterial multilayered structures," Microwave and Optical Technology Letters, Vol. 40, No. 6, 460-465, 2004.
    doi:10.1103/PhysRevE.64.056625

    18. Ziolkowski, R. W. and E. Heyman, "Wave propagation in media having negative permittivity and permeability," Phys. Rev. E, Vol. 64, No. 5, 056625, 2001.
    doi:10.2528/PIER07090305

    19. Oraizi, H. and A. Abdolali, "Ultra wide band RCS optimization of multilayerd cylinderical structures for arbitrarily polarized incident plane waves," Progress In Electromagnetics Research, Vol. 78, 129-157, 2008.
    doi:10.1364/OE.17.008513

    20. Sounas, D. L. and N. V. Kantartzis, "Systematic surface waves analysis at the interfaces of composite DNG/SNG media," Opt. Express, Vol. 17, No. 10, 8513-8524, 2009.
    doi:10.1109/TAP.2003.817553

    21. Alu, A. and N. Engheta, "Pairing an epsilon-negative slab with a Mu-negative slab: Resonance, tunneling and transparency," IEEE Trans. Antennas and Propagation, Vol. 51, No. 10, 2558-2571, 2003.

    22. Vinoy, K. J. and R. M. Jha, Radar Absorbing Materials: From Theory to Design and Characterization, Kluwer Academic Publishers, Norwell, Massachusetts, 1996.
    doi:10.1006/jcph.1994.1159

    23. Berenger, J. P., "A perfectly matched layer for the absorption of electromagneticwaves," Journal of Computational Physics, Vol. 114, 185-200, 1994.
    doi:10.1109/8.564092

    24. Ziolokowski, R. W., "The design of Maxwellian absorbers for numerical boundary conditions and for practical applications using engineered artificial materials," IEEE Trans. Antennas and Propagation, Vol. 45, No. 4, 656-671, 1997.
    doi:10.1109/22.238519

    25. Michielssen, E., J. M. Sajer, S. Ranjithan, and R. Mittra, "Design of lightweight, broad-band microwave absorbers using genetic algorithms," IEEE Trans. Microwave Theory Tech., Vol. 41, No. 67, 1024-1031, 1993.
    doi:10.2528/PIERB07120803

    26. Oraizi, H. and A. Abdolali, "Combination of MLS, GA & CG for the reduction of RCS of multilayered cylindrical structures composed of dispersive metamaterials," Progress In Electromagnetic Research B, Vol. 3, 227-253, 2008.
    doi:10.2528/PIER06120801

    27. Xu, Z., W. Lin, and L. Kong, "Controllable absorbing of metamaterial at microwave," Progress In Electromagnetics Research, Vol. 69, 117-125, 2007.
    doi:10.1109/8.899676

    28. Mosallaei, H. and Y. Rahmat-Samii, "RCS reduction of canonical targets using genetic algorithm synthesized RAM," IEEE Trans. Antennas and Propagation, Vol. 48, No. 10, 1594-1606, 2000.
    doi:10.2528/PIERC08021906

    29. Oraizi, H. and A. Abdolali, "Design and optimization of planar multilayer antireflection metamaterial coatings at Ku band under circularly polarized oblique plane wave incidence," Progress In Electromagnetics Research C, Vol. 3, 1-18, 2008.
    doi:10.1103/PhysRevLett.69.2772

    30. Pendry, J. B. and A. MacKinnon, "Calculation of photon dispersion," Phys. Rev. Lett., Vol. 69, No. 3, 2772-2775, 1992.
    doi:10.1103/PhysRevLett.76.4773

    31. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructure," Phys. Rev. Lett., Vol. 76, No. 25, 4773-4776, 1996.
    doi:10.1163/156939307783134452

    32. Manzanares-Martinez, J. and J. Gaspar-Armenta, "Direct integration of the constitutive relations for modeling dispersive metamaterials using the finite difference time-domain technique," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2297-2310, 2007.
    doi:10.1088/0953-8984/10/22/007

    33. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low-frequency plasmons in thin wire structures," Phys. Condens. Matter, Vol. 10, 4785-4809, 1998.
    doi:10.2528/PIER09031306

    34. Sabah, C. and S. Uckun, "Multilayer system of Lorentz/Drude type metamaterials with dielectric slabs and its application to electromagnetic filters," Progress In Electromagnetics Research, Vol. 91, 349-364, 2009.

    35. Rahmat-Samii, Y. and E. Michielssen, Electromagnetic Optimization by Genetic Algorithms, Wiley, New York, 1999.
    doi:10.1109/MAP.2006.1645560

    36. Oraizi, H., "Application of the method of least squaresto electromagnetic engineering problems," IEEE Antenna and Propagation Magazine, Vol. 48, No. 1, 50-75, 2006.