Vol. 101

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2010-02-09

Effect of High-Order Modes on Tunneling Characteristics

By Hsin-Yu Yao and Tsun-Hun Chang
Progress In Electromagnetics Research, Vol. 101, 291-306, 2010
doi:10.2528/PIER09121603

Abstract

Most tunneling effects are investigated using a one-dimensional model, but such an approach fails to explain the phenomena of the propagation of wave in a system with geometric discontinuities. This work studies the tunneling characteristics in a waveguide system that consists of a middle section with a distinct cutoff frequency, which is controlled by the cross-sectional geometry. Unlike in the one-dimensional case, in which only the fundamental mode is considered, in a virtually three-dimensional system, multiple modes have to be taken into consideration. High-order modes (HOMs) modify the amplitude and the phase of the fundamental mode (TE10), thus subsequently affecting the transmission and group delay of a wave. The effect of the high-order evanescent modes is calculated, and the results are compared with the simulated ones using a full-wave solver. Both oversized and undersized waveguides reveal the necessity of considering the HOMs. The underlying physics is manifested using a multiple-reflection model. This study indicates that the high-order evanescent modes are essential to the explanation of the phenomena in a tunneling system with geometrical discontinuities.

Citation


Hsin-Yu Yao and Tsun-Hun Chang, "Effect of High-Order Modes on Tunneling Characteristics," Progress In Electromagnetics Research, Vol. 101, 291-306, 2010.
doi:10.2528/PIER09121603
http://jpier.org/PIER/pier.php?paper=09121603

References


    1. Landauer, R. and T. Martin, "Barrier interaction time in tunneling," Rev. Mod. Phys., Vol. 66, No. 1, 217-228, 1994.
    doi:10.1103/RevModPhys.66.217

    2. Hauge, E. H. and J. A. Stovneng, "Tunneling time: A critical review," Rev. Mod. Phys., Vol. 61, No. 4, 917-936, 1989.
    doi:10.1103/RevModPhys.61.917

    3. Solli, D., R. Y. Chiao, and J. M. Hickmann, "Superluminal effects and negative group delays in electronics, and their applications," Phys. Rev. E, Vol. 66, 056601, 2002.
    doi:10.1103/PhysRevE.66.056601

    4. Jackson, A. D., A. Lande, and B. Lautrup, "Apparent superluminal behavior in wave propagation," Phys. Rev. A, Vol. 64, 044101, 2001.
    doi:10.1103/PhysRevA.64.044101

    5. Winful, H. G., "Nature of superluminal barrier tunneling," Phys. Rev. Lett., Vol. 90, 023901, 2003.
    doi:10.1103/PhysRevLett.90.023901

    6. Hartman, T. E., "Tunneling of a wave packet," J. Appl. Phys., Vol. 33, No. 12, 3427-3433, 1962.
    doi:10.1063/1.1702424

    7. Winful, H. G., "Delay time and the hartman effect in quantum tunneling," Phys. Rev. Lett., Vol. 91, 260401, 2003.
    doi:10.1103/PhysRevLett.91.260401

    8. Stenner, M. D., D. J. Gauthier, and M. A. Neifeld, "Fast causal information transmission in a medium with a slow group velocity," Phys. Rev. Lett., Vol. 94, 053902, 2005.
    doi:10.1103/PhysRevLett.94.053902

    9. Wang, L. J., A. Kuzmich, and A. Dogariu, "Gain-assisted superluminal light propagation," Nature, Vol. 406, 277-279, 2000.
    doi:10.1038/35018520

    10. Cui, C. L., J. K. Jia, J. W. Gao, Y. Xue, G. Wang, and J. H. Wu, "Ultraslow and superluminal light propagation in a four-level atomic system," Phys. Rev. A, Vol. 76, 033815, 2007.
    doi:10.1103/PhysRevA.76.033815

    11. Halvorsen, T. G. and J. M. Leinaas, "Superluminal group velocity in a birefringent crystal," Phys. Rev. A, Vol. 77, 023808, 2008.
    doi:10.1103/PhysRevA.77.023808

    12. Steinberg, A. M., P. G. Kwiat, and R. Y. Chiao, "Measurement of the single-photon tunneling time," Phys. Rev. Lett., Vol. 71, No. 5, 708-711, 1993.
    doi:10.1103/PhysRevLett.71.708

    13. Von Freymann, G., S. John, S. Wong, V. Kitaev, and G. A. Ozin, "Measurement of group velocity dispersion for finite size three-dimensional photonic crystals in the near-infrared spectral region," Appl. Phys. Lett., Vol. 86, 053108, 2005.
    doi:10.1063/1.1857076

    14. Vetter, R. M., A. Haibel, and G. Nimtz, "Negative phase time for scattering at quantum wells: A microwave analogy experiment," Phys. Rev. E, Vol. 63, 046701, 2001.
    doi:10.1103/PhysRevE.63.046701

    15. Brodowsky, H. M., W. Heitmann, and G. Nimtz, "Comparison of experimental microwave tunneling data with calculations based on Maxwell's equations," Phys. Lett. A, Vol. 222, 125-129, 1996.
    doi:10.1016/0375-9601(96)00646-9

    16. Winful, H. G., "Group delay, stored energy, and the tunneling of evanescent electromagnetic waves," Phys. Rev. E, Vol. 68, 016615, 2003.
    doi:10.1103/PhysRevE.68.016615

    17. Wang, Z. Y. and C. D. Xiong, "Theoretical evidence for the superluminality of evanescent modes," Phys. Rev. A, Vol. 75, 042105, 2007.
    doi:10.1103/PhysRevA.75.042105

    18. Chen, X. and C. Xiong, "Electromagnetic simulation of the evanescent mode," Ann. Phys. (Leipzig), Vol. 7, 631, 1998.

    19. Pablo, A., L. Barbero, H. E. Hernandez-Figueroa, and E. Recami, "Propagation speed of evanescent modes," Phys. Rev. E, Vol. 62, No. 6, 8628-8635, 2000.
    doi:10.1103/PhysRevE.62.8628

    20. Enders, A. and G. Nimtz, "Photonic-tunneling experiments," Phys. Rev. B, Vol. 47, No. 15, 9605-9609, 1993.
    doi:10.1103/PhysRevB.47.9605

    21. Enders, A. and G. Nimtz, "Evanescent-mode propagation and quantum tunneling," Phys. Rev. E, Vol. 48, No. 1, 632-634, 1993.
    doi:10.1103/PhysRevE.48.632

    22. Winful, H. G., "The meaning of group delay in barrier tunnelling: A re-examination of superluminal group velocities," New J. Phys., Vol. 8, 101, 2006.
    doi:10.1088/1367-2630/8/6/101

    23. Fleming, J. G., S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, "All-metallic three-dimensional photonic crystals with a large infrared bandgap," Nature, Vol. 417, 52-55, 2002.
    doi:10.1038/417052a

    24. Capmany, J. and D. Novak, "Microwave photonics combines two worlds," Nature Photonic, Vol. 1, 319-330, 2007.
    doi:10.1038/nphoton.2007.89

    25. Pozar, D. M., Microwave Engineering, Chap. 5, Addison-Welsey, New York, 1990.

    26. Gesell, G. A. and I. R. Ciric, "Recurrence modal analysis for multiple waveguide discontinuities and its application to circular structures," IEEE Trans. Microwave Theory Tech., Vol. 41, No. 3, 484-490, 1993.
    doi:10.1109/22.223749

    27. Rozzi, T. E. and W. F. G. Mecklenbrauker, "Wide-band network modeling of interacting inductive irises and steps," IEEE Trans. Microwave Theory Tech., Vol. 23, No. 2, 235-240, 1975.
    doi:10.1109/TMTT.1975.1128532

    28. Davies, P. C. W., "Quantum tunneling time," Am. J. Phys., Vol. 73, No. 1, 23-27, 2004.
    doi:10.1119/1.1810153