Vol. 100

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2010-01-17

Homogeneous and Heterogeneous Breast Phantoms for Ultra-Wideband Microwave Imaging Applications

By Joshua Chong Yue Lai, Cheong Boon Soh, Erry Gunawan, and Kay Soon Low
Progress In Electromagnetics Research, Vol. 100, 397-415, 2010
doi:10.2528/PIER09121103

Abstract

The paper discusses fabrication of homogenous and heterogeneous breast phantoms to simulate the dielectric properties of human breast over the microwave frequency range from 0.5 GHz to 13.5 GHz. The breast phantoms have stable mechanical configuration and dielectric properties suitable for microwave imaging experiments particularly ultra-wideband microwave imaging for breast cancer detection.

Citation


Joshua Chong Yue Lai, Cheong Boon Soh, Erry Gunawan, and Kay Soon Low, "Homogeneous and Heterogeneous Breast Phantoms for Ultra-Wideband Microwave Imaging Applications," Progress In Electromagnetics Research, Vol. 100, 397-415, 2010.
doi:10.2528/PIER09121103
http://jpier.org/PIER/pier.php?paper=09121103

References


    1. Li, X., S. K. Davis, S. C. Hagness, D. W. Van Der Weide, and B. D. Van Veen, "Microwave imaging via space-time beamforming: Experimental investigation of tumor detection in multi-layer breast phantoms," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 8, 1856-1865, Aug. 2004.
    doi:10.1109/TMTT.2004.832686

    2. Sill, J. M. and E. C. Fear, "Tissue sensing adaptive radar for breast cancer detection --- Experimental investigation of simple tumor models," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 11, 3312-3319, Nov. 2005.
    doi:10.1109/TMTT.2005.857330

    3. Bindu, G., S. J. Abraham, A. Lonappan, V. Thomas, C. K. Aanandan, and K. T. Mathew, "Active microwave imaging for breast cancer detection," Progress In Electromagnetics Research, Vol. 58, 149-169, 2006.
    doi:10.2528/PIER05081802

    4. Li, X. and S. C. Hagness, "A confocal microwave imaging algorithm for breast cancer detection," IEEE Microwave and Wireless Components Letters, Vol. 11, No. 3, 130-132, Mar. 2001.
    doi:10.1109/7260.915627

    5. Fear, E. C., X. Li, S. C. Hagness, and M. A. Stuchly, "Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions," IEEE Transactions on Biomedical Engineering, Vol. 49, No. 8, 812-822, Aug. 2002.
    doi:10.1109/TBME.2002.800759

    6. Bond, E. J., X. Li, S. C. Hagness, and B. D. Van Veen, "Microwave imaging via space-time beamforming for early detection of breast cancer," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 8, 1690-1705, Aug. 2003.
    doi:10.1109/TBME.2006.878058

    7. Xie, Y., B. Guo, L. Xu, J. Li, and P. Stoica, "Multistatic adaptive microwave imaging for early breast cancer detection," IEEE Transactions on Biomedical Engineering, Vol. 53, No. 8, 1647-1657, Aug. 2006.
    doi:10.1088/0031-9155/50/18/001

    8. Lazebnik, M., E. L. Madsen, G. R. Frank, and S. C. Hagness, "Tissue-mimicking phantom materials for narrowband and ultrawideband microwave applications," Physics in Medicine and Biology, Vol. 50, 4245-4258, 2005.
    doi:10.1016/0301-5629(82)90034-5

    9. Madsen, E. L., J. A. Zagzebski, and G. R. Frank, "Oil-in-gelatin dispersions for use as ultrasonically tissue-mimicking materials," Ultrasound in Medicine and Biology, Vol. 8, 277-287, 1982.
    doi:10.1002/jcu.1870100207

    10. Madsen, E. L., J. A. Zagzebski, G. R. Frank, J. F. Greenleaf, and P. L. Carson, "Anthropomorphic breast phantoms for assessing ultrasonic imaging system performance and for training ultrasonographers," Journal of Clinical Ultrasound, Vol. 10, 67-75, 1982.
    doi:10.1016/S0301-5629(82)80006-9

    11. Madsen, E. L., J. A. Zagzebski, and G. R. Frank, "An anthropo-morphic ultrasound breast phantom containing intermediate-sized scatteres," Ultrasound in Medicine and Biology, Vol. 8, 381-392, 1982.
    doi:10.1002/mop.20517

    12. Bindu, G., A. Lonappan, V. Thomas, V. Hamsakkutty, C. K. Aanandan, and K. T. Mathew, "Microwave characterization of breast-phantom materials," Microwave and Optical Technology Letters, Vol. 43, No. 6, 506-508, 2004.

    13. Chaudhary, S. S., R. K. Mishra, A. Swarup, and J. M. Thomas, "Dielectric properties of normal and malignant human breast tissues at radiowave and microwave frequencies," Indian Journal of Biochemistry & Biophysics, Vol. 21, 76-79, 1984.
    doi:10.1109/10.1374

    14. Surowiec, A. J., S. S. Stuchly, J. R. Barr, and A. Swarup, "Dielectric properties of breast carcinoma and the surrounding tissues," IEEE Transactions on Biomedical Engineering, Vol. 35, No. 4, 257-263, 1988.
    doi:10.1118/1.597312

    15. Joines, W. T., Y. Z. Dhenxing, and R. L. Jirtle, "The measured electrical properties of normal and malignant human tissues from 50 to 900 MHz," Medical Physics, Vol. 21, 547-550, 1994.
    doi:10.1088/0031-9155/37/1/014

    16. Campbell, A. M. and D. V. Land, "Dielectric properties of female human breast tissue measured in vitro at 3.2 GHz," Physics in Medicine and Biology, Vol. 37, 193-210, 1992.
    doi:10.1088/0031-9155/52/10/001

    17. Lazebnik, M., L. McCartney, D. Popovic, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, A. Magliocco, J. H. Booske, M. Okoniewski, and S. C. Hagness, "A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries," Physics in Medicine and Biology, Vol. 52, 2637-2656, May 2007.