Electromagnetic field will scatter when incident on boundaries separating media with different constitutive parameters. This paper demonstrates the use of a differential operator on recorded scattered waves to reveal the shape of the boundary. The method is noninvasive and is composed of three phases. First, the area of interest is illuminated and the resulting scattered electromagnetic fields are recorded. In the 2nd phase, the captured data is numerically reverse simulated in time to reconstruct the field distribution in the region of interest. Finally, the differential imaging operator is applied on the reconstructed wave field, creating an image delineating the boundary where scattered fields originated. This technique does not require the knowledge of location of the boundaries nor the nature of the discontinuity in the constitutive parameters. The proposed imaging system is scalable, whereby modification of the source signal, recorder sampling, and numerical model allows imaging objects of smaller dimensions and creation of sharper and more accurate images.
2. Zhou, H., T. Takenaka, J. E. Johnson, and T. Tanaka, "A breast imaging model using microwaves and a time domain three dimensional reconstruction method," Progress In Electromagnetics Research, Vol. 93, 57-70, 2009.
doi:10.2528/PIER09033001
3. Kuster, M., et al., "Acoustic imaging in enclosed spaces: Analysis of room geometry modi¯cations on the impulse response ," J. Acoust. Soc. Am., Vol. 116, No. 4, Pt. 1, 2126-2136, Oct. 2004.
4. Niendorf, T. and D. K. Sodickson, Highly accelerated cardiovascular magnetic resonance imaging: Concepts and clinical applications, Proceedings of the 28th IEEE EMBS Annual International Conference, 373-376, New York City, USA, Aug. 2006.
5. Wapenaar, C. P. A., G. L. Peels, V. Budejick, and A. J. Berkhout, "Inverse extrapolation of primary seismic waves," Geophysics, Vol. 54, No. 7, 853-863, Jul. 1989.
doi:10.1190/1.1442714
6. Goharian, M., M. Soleimani, and G. Moran, "A trust region subproblem for 3D electrical impedance tomography inverse problem using experimental data," Progress In Electromagnetics Research, Vol. 94, 19-32, 2009.
doi:10.2528/PIER09052003
7. Chang, W. F. and G. A. Cahon, "3D acoustic reverse-time migration," Geophysical Prospecting, Vol. 37, 243-256, Apr. 1989.
doi:10.1111/j.1365-2478.1989.tb02205.x
8. Stolt, R. H., "Migration by fourier transform," Geophysics, Vol. 43, 23-48, 1978.
doi:10.1190/1.1440826
9. Lei, J., S. Liu, Z. H. Li, and M. Sun, "Image reconstruction algorithm based on the extended regularized total least squares method for electrical capacitance tomography," IET Science, Measurement & Technology, Vol. 2, 326-336, Sep. 2008.
doi:10.1049/iet-smt:20080029
10. Yu, J., Z. Huang, H. Ji, B.Wang, and H. Li, "Image reconstruction algorithm of electrical resistance tomography for the measurement of two-phase flow," Proceedings of IEEE Sensors, Vol. 1, 63-66, Oct. 2003.
11. Lam, K., M. J. Yedlin, and C. G. Farquharson, "Two-dimensional radio frequency tomography," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 4, 801-808, Apr. 2007.
doi:10.1109/TMTT.2007.893654
12. Soleimani, M., C. N. Mitchell, R. Banasiak, R. Wajman, and A. Adler, "Four-dimensional electrical capacitance tomography imaging using experimental data," Progress In Electromagnetics Research, Vol. 90, 171-186, 2009.
doi:10.2528/PIER09010202
13. Soleimani, M., "Simultaneous reconstruction of permeability and conductivity in magnetic induction tomography ," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5-6, 785-798, 2009.
doi:10.1163/156939309788019822
14. Winton, S. C., P. Kosmas, and C. M. Rappaport, "FDTD simulation of TE and TM plane waves at nonzero incidence in arbitrary layered media," IEEE Trans. Antennas Propagat., Vol. 53, No. 5, 1721-1728, May 2005.
doi:10.1109/TAP.2005.846719
15. DuBroff, R. I., M. I. Raza, and T. J. Herrick, "Remote detection of acoustic boundaries using radiation imaging operators," IEEE Trans. Ultrason., Ferroelect., Freq. Contr., Vol. 42, 1012-1019, Nov. 1995.
16. Raza, M. I., R. I. DuBroff, and J. L. Drewniak, "Radiation imaging operators applied to the detection of velocity and density contrast boundaries," IEEE Trans. Ultrason., Ferroelect., Freq. Contr., Vol. 44, 1401-1404, Nov. 1997.
17. Pozar, D. M., Microwave Engineering, 2nd Ed., John Wiley & Sons, 2004.
18. Pan, P. and D. Schonfeld, "Image reconstruction and multidimensional ¯eld estimation from randomly scattered sensors," IEEE Trans. Image Processing, Vol. 17, 94-99, Jan. 2008.
doi:10.1109/TIP.2007.912579
19. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 3rd Ed., Artech House, Boston, MA, Jun. 30, 2005.
20. Hira, A., S. A. Hossain, and M. I. Raza, Interpolation techniques to improve RIO boundary detection, PIERS Proceedings, 1234-1238, Beijing, China, March 23-27, 2009.
21. Berenger, J. P., "Perfect matched layer for the FDTD solution of wave-structure interaction problems," IEEE Trans. Antennas Propagat., Vol. 44, 110-117, Jan. 1996.
doi:10.1109/8.477535
22., www.mathworks.com, MATLAB®, Version 7, Release 14.
23. Zhang, H., S. Y. Tan, and H. S. Tan, "A flanged parallel-plate waveguide probe for microwave imaging of tumors," Progress In Electromagnetics Research, Vol. 97, 45-60, 2009.
doi:10.2528/PIER09090901