Vol. 100
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-12-09
Microwave Measurements of Dielectric Constants by Exponential and Logarithmic Mixture Equations
By
Progress In Electromagnetics Research, Vol. 100, 13-26, 2010
Abstract
This article reports on a study of the dielectric constants of ceramic dispersions in the polyethylene matrix at microwave frequency. The exponential and logarithmic mixture rules are studied in three ceramic powders of fillers with dielectric constants 10, 20, and 36, respectively. The experimental values of the dielectric constants of the mixtures are compared to those obtained by using different mixing laws. The mixing rules are also adopted to calculate the dielectric constants of pure ceramics from the measured dielectric constants of composites with various concentrations. The theories on errors of calculations are studied. The most adequate mixture equation for measuring the dielectric constants of pure ceramics is suggested.
Citation
Jyh Sheen, Zuo-Wen Hong, Che-Wei Su, and Heng-Chou Chen, "Microwave Measurements of Dielectric Constants by Exponential and Logarithmic Mixture Equations," Progress In Electromagnetics Research, Vol. 100, 13-26, 2010.
doi:10.2528/PIER09091706
References

1. Achour, M. E., M. El Malhi, J. L. Miane, F. Carmona, and F. Lahjomri, "Microwave properties of carbon black-epoxy resin composites and their simulation by means of mixture laws," J. of Applied Polymer Science, Vol. 73, 969-973, 1999.
doi:10.1002/(SICI)1097-4628(19990808)73:6<969::AID-APP14>3.0.CO;2-1

2. Van Beek, L. K. H., "Dielectric behavior of heterogeneous systems," Progress in Dielectrics, Vol. 7, 69-114, 1967.

3. Tinga, W. R., W. A. G. Voss, and D. F. Blossey, "Generalized approach to multiphase dielectric mixture theory," J. Appl. Phys., Vol. 44, 3897-3902, 1973.
doi:10.1063/1.1662868

4. Sheen, J., Z. W. Hong, W. Liu, W. L. Mao, and C. A Chen, "Study of dielectric constants of binary composites at microwave frequency by mixture laws derived from three basic particle shapes," European Polymer Journal, Vol. 45, 1316-1321, 2009.
doi:10.1016/j.eurpolymj.2008.08.002

5. Wakino, K., "New proposal on mixing rule of the dielectric constant of mixture," IEEE International Symposium on Applications of Ferroelectrics, 33-38, 1994.

6. Stolzle, S., A. Enders, and G. Nimtz, "Numerical simulation of random composite dielectrics," J. Phys. I, Vol. 2, 401-408, France, 1999.
doi:10.1051/jp1:1992153

7. Kim, J. B., T. W. Kim, and C. G. Kim, "Simulation method of complex permittivities of carbon balck/epoxy composites at microwave frequency band," J. of Applied Polymer Science, Vol. 100, 2189-2195, 2006.
doi:10.1002/app.23653

8. Zhou, P., L. Deng, B.-I. Wu, and J. A. Kong, "Influence of scatterer's geometry on power-law formula in random mixing composites," Progress In Electromagnetics Research, Vol. 85, 69-82, 2008.
doi:10.2528/PIER08081705

9. Navid, A. and L. Pilon, "Effect of polarization and morphology on the optical properties of absorbing nanoporous thin films," Thin Solid Films, Vol. 516, 4159-4167, 2008.
doi:10.1016/j.tsf.2007.10.117

10. Xiang, F., H.Wang, and X. Yao, "Preparation and dielectric properties of bismuth-based dielectric/PTFE microwave composites," J. Eur. Ceram. Soc., Vol. 26, 1999-2002, 2006.
doi:10.1016/j.jeurceramsoc.2005.09.048

11. Lichtenecker, K. and K. Rother, "Die herleitung des logarithmischen mischungsgesetzes als allegemeinen prinzipien der staionaren stromung," K. Phys. Zeitschrift, Vol. 32, 255-260, 1931.

12. Ragossnig, H. and A. Feltz, "Characterization of dielectric powders by a new defined form factor," J. Eur. Ceram. Soc., Vol. 18, 429-444, 1998.
doi:10.1016/S0955-2219(97)00146-5

13. Looyenga, H., "Dielectric constants of mixtures," Physica, Vol. 31, 401-406, 1965.
doi:10.1016/0031-8914(65)90045-5

14. Birchak, J. R., C. G. Gardner, J. E. Hipp, and J. M. Victor, "High dielectric constant microwave probes for sensing soil moisture," Proc. IEEE, Vol. 62, 93-98, 1974.

15. Lichtenecker, K., "Die dielektrizitatskonstante naturlicher und kunstlicher mischkorper," K. Phys. Zeitschrift, Vol. 27, 115-158, 1926.

16. Koledintseva, M. Y., J. L. Drewniak, R. E. DuBroff, K. N. Rozanov, and B. Archambeault, "Modeling of shielding composite materials and structures for microwave frequencies," Progress In Electromagnetics Research B, Vol. 15, 197-215, 2009.
doi:10.2528/PIERB09050410

17. Huang, K. and X. Yang, "A method for calculating the effective permittivity of a mixture solution during a chemical reaction by experimental results," Progress In Electromagnetics Research Letters, Vol. 5, 99-107, 2008.
doi:10.2528/PIERL08110403

18. Jylha, L. and A. H. Sihvola, "Tunability of granular ferroelectric dielectric composites," Progress In Electromagnetics Research, Vol. 78, 189-207, 2008.
doi:10.2528/PIER07081502

19. Koledintseva, M. Y., R. E. DuBroff, R. W. Schwartz, and J. L. Drewniak, "Double statistical distribution of conductivity and aspect ratio of inclusions in dielectric mixtures at microwave frequencie," Progress In Electromagnetics Research, Vol. 77, 193-214, 2007.
doi:10.2528/PIER07073103

20. Lou, J., T. A. Hatton, and P. E. Laibinis, "Effective dielectric properties of solvent mixtures at microwave frequencies," J. Phys. Chem. A, Vol. 101, 5262-5268, 1997.
doi:10.1021/jp970731u

21. Koledintseva, M. Y., S. K. R. Chandra, R. E. DuBroff, and R. W. Schwartz, "Modeling of dielectric mixtures containing conducting inclusions with statistically distributed aspect ratio," Progress In Electromagnetics Research, Vol. 66, 213-228, 2006.
doi:10.2528/PIER06110903

22. Koledintseva, M. Y., R. E. DuBroff, and R. W. Schwartz, "A Maxwell garnett model for dielectric mixtures containing conducting particles at optical frequencies," Progress In Electromagnetics Research, Vol. 63, 223-242, 2006.
doi:10.2528/PIER06052601

23. Wang, H. G. and C. H. Chan, "Mixture effective permittivity simulations using imlmqrf method on preconditioned EFIE," Progress In Electromagnetics Research, Vol. 57, 285-310, 2006.
doi:10.2528/PIER05072603

24. Tinga, W. R., "Mixture laws and microwave-material interactions," Progress In Electromagnetics Research, Vol. 6, 1-40, 1992.

25. Sihvola, A., "Two main avenues leading to the Maxwell garnett mixing rule," Journal of Electromagnetic Waves and Applications, Vol. 15, 715-725, 2001.
doi:10.1163/156939301X00968

26. Pekonen, O., K. KarkkÄainen, A. Sihvola, and K. Nikoskinen, "Numerical testing of dielectric mixing rules by FDTD method," Journal of Electromagnetic Waves and Applications, Vol. 13, 67-87, 1999.
doi:10.1163/156939399X01618

27. Hakki, B. W. and P. D. Coleman, "A dielectric resonator method of measuring inductive capacities in the millimeter range," IRE Trans. Microwave Theory Tech., Vol. 8, 402-410, 1960.
doi:10.1109/TMTT.1960.1124749

28. Sheen, J., "Study of microwave dielectric properties measurements by various resonance techniques," Measurement, Vol. 37, 123-130, 2005.
doi:10.1016/j.measurement.2004.11.006