Vol. 97
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-10-12
Effects of Fibroglandular Tissue Distribution on Data-Independent Beamforming Algorithms
By
Progress In Electromagnetics Research, Vol. 97, 141-158, 2009
Abstract
The effects of the fibroglandular tissue distribution of the breast on data-independent microwave imaging algorithms are investigated in this paper. A data-independent beamformer is a beamformer whose weights do not depend on the array data and are chosen, based on a channel model, to compensate for path-dependent attenuation and phase effects. The effectiveness and robustness of data-independent UWB beamforming algorithms relies upon two specific characteristics of breast tissue at microwave frequencies: firstly, that there exists a significant dielectric contrast between cancerous tissue and normal healthy breast tissue; secondly, that the propagation, attenuation and phase characteristics of normal tissue allow for constructive addition of the UWB returns using the Confocal Microwave Imaging (CMI) technique. However, two recent studies by Lazebnik et al. have highlighted a significant dielectric contrast between normal adipose and fibroglandular tissue within the breast. These results suggest a much more difficult imaging scenario where clutter due to fibroglandular tissue is a significant concern and that constructive addition of backscattered signals is potentially much more problematic than previously assumed. In this paper, three existing data-independent beamformers are tested on several different breast models, examining the effect of different fibroglandular tissue distribution on the performance of the data-independent imaging algorithms.
Citation
Martin O'Halloran, Martin Glavin, and Edward Jones, "Effects of Fibroglandular Tissue Distribution on Data-Independent Beamforming Algorithms," Progress In Electromagnetics Research, Vol. 97, 141-158, 2009.
doi:10.2528/PIER09081701
References

1. Nass, S. L., I. C. Henderson, and J. C. Lashof, Mammography and Beyond: Developing Technologies for the Early Detection of Breast Cancer, National Academy Press, 2001.

2. Lazebnik, M., L. McCartney, D. Popovic, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, A. Magliocco, J. H. Booske, M. Okoniewski, and S. C. Hagness, "A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries," Phys. Med. Biol., Vol. 52, 2637-2656, 2007.
doi:10.1088/0031-9155/52/10/001

3. Lazebnik, M., D. Popovic, L. McCartney, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, T. Ogilvie, A. Magliocco, T. M. Breslin, W. Temple, D. Mew, J. H. Booske, M. Okoniewski, and S. C. Hagness, "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Phys. Med. Biol., Vol. 52, 6093-6115, 2007.
doi:10.1088/0031-9155/52/20/002

4. Chaudhary, S. S., R. K. Mishra, A. Swarup, and J. M. Thomas, "Dielectric properties of normal and malignant human breast tissue at radiowave and microwave frequencies," Indian J. Biochem. Biophys., Vol. 21, 76-79, 1994.

5. Surowiec, A. J., S. S. Stuchly, J. R. Barr, and A. Swarup, "Dielectric properties of breast carcinoma and the surrounding tissues," IEEE Trans. Biomed. Eng., Vol. 35, No. 4, 257-263, 1988.
doi:10.1109/10.1374

6. Joines, W., Y. Zhang, C. Li, and R. L. Jirtle, "The measured electrical properties of normal and malignant human tissues from 50 to 900 MHz," Med. Phys., Vol. 21, 547-550, 1993.
doi:10.1118/1.597312

7. Campbell, A. M. and D. V. Land, "Dielectric properties of female human breast tissue measured in vitro at 3.2 GHz," Phys. Med. Biol., Vol. 37, 193-210, 1992.
doi:10.1088/0031-9155/37/1/014

8. Meaney, P. M., M. W. Fanning, D. Li, S. P. Poplack, and K. D. Paulsen, "A clinical prototype for active microwave imaging of the breast," IEEE Trans. Microwave Theory Tech., Vol. 48, 1841-1853, 2000.

9. Hagness, S. C., A. Taove, and J. E. Bridges, "Two-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Fixed focus and antenna array sensors," IEEE Trans. Biomed. Eng., Vol. 45, 1470-1479, 1998.
doi:10.1109/10.730440

10. Fear, E. C. and M. A. Stuchly, "Three-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Design of an antenna array element," EEE Trans. Antennas and Propagat., Vol. 47, 783-791, May 1999.

11. Nilavalan, R., S. C. Hagness, and B. D. V. Veen, "Numerical investigation of breast tumour detection using multi-static radar," IEE Electronic Letters, Vol. 39, No. 25, 1787-1789, Dec. 2003.
doi:10.1049/el:20031183

12. Lim, H., N. Nhung, E. Li, and N. Thang, "Confocal microwave imaging for breast cancer detection: Delay-multiply-and-sum image reconstruction algorithm," IEEE Trans. Biomed. Eng., Vol. 55, No. 6, Jun. 2008.

13. Klemm, M., I. J. Craddock, J. A. Leendertz, A. Preece, and R. Benjamin, "Improved delay-and-sum beamforming algorithm for breast cancer detection," International Journal of Antennas and Propagation, Vol. 2008, 2008.

14. Liand, X. and S. C. Hagness, "A confocal microwave imaging algorithm for breast cancer detection," IEEE Microwave and Wireless Components Letters, Vol. 11, 130-132, 2001.

15. Lazebnik, M., M. Okoniewski, J. Booske, and S. Hagness, "Highly accurate debye models for normal and malignant breast tissue dielectric properties at microwave frequencies," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 12, 822-824, Dec. 2007.
doi:10.1109/LMWC.2007.910465

16. Gabriel, C., S. Gabriel, and E. Corthout, "The dielectric properties of biological tissues: I. Literature survey," Phys. Med. Biol., Vol. 41, 2231-2249, 1996.
doi:10.1088/0031-9155/41/11/001

17. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz," Phys. Med. Biol., Vol. 41, 2251-2269, 1996.
doi:10.1088/0031-9155/41/11/002

18. Bond, E. J., X. Li, S. C. Hagness, and B. D. V. Veen, "Microwave imaging via space-time beamforming for early detection of breast cancer," IEEE Trans. Antennas and Propagat., 1690-1705, 2003.
doi:10.1109/TAP.2003.815446

19. Fear, E. C. and M. Okoniewski, "Confocal microwave imaging for breast tumor detection: Application to a hemispherical breast model," 2002 IEEE MTT-S International Microwave Symposium Digest, Vol. 3, 1759-1763, 2002.

20. Fear, E. C., X. Li, S. C. Hagness, and M. A. Stuchly, "Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions," IEEE Trans. Biomed. Eng., Vol. 47, 812-812, 2002.
doi:10.1109/TBME.2002.800759