Vol. 95
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-08-05
Microwave Filtering in Waveguides Loaded with Artificial Single OR Double Negative Materials Realized with Dielectric Spherical Particles in Resonance
By
Progress In Electromagnetics Research, Vol. 95, 103-120, 2009
Abstract
The potential to implement microwave filters with special properties, by loading a waveguide with artificial Single Negative (SNG) or Double negative (DNG) materials was investigated. The SNG or DNG medium was structured with dielectric spherical particles of high permittivity embedded in a dielectric material of much smaller permittivity. Numerical analysis of the frequency response of the waveguide loaded with slabs of this type of composite dielectrics reveals that filtering performance, with attributes like very sharp attenuation at the bounds of frequency pass or stop band can be obtained. The central frequency as well as the bandwidth of the filtering can be controlled via the size and the dielectric constants of the particles, the dielectric constant of the hosting material and the size of the slab.
Citation
Katherine Siakavara, and Constantinos Damianidis, "Microwave Filtering in Waveguides Loaded with Artificial Single OR Double Negative Materials Realized with Dielectric Spherical Particles in Resonance," Progress In Electromagnetics Research, Vol. 95, 103-120, 2009.
doi:10.2528/PIER09061506
References

1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 10, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

2. Ziolkowski, R. W. and E. Heyman, "Wave propagation in media having negative permittivity and permiability," Phys. Rev. E, Vol. 64, 056625, 2001.
doi:10.1103/PhysRevE.64.056625

3. Smith, D. R. and N. Kroll, "Negative refracting index in left-handed materials," Phys. Rev. Lett., Vol. 85, 2933, 2000.
doi:10.1103/PhysRevLett.85.2933

4. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966, 2000.
doi:10.1103/PhysRevLett.85.3966

5. Ziolkowski, R. W., "Superluminal transmission of information through an electromagnetic metamaterial," Phys. Rev. E, Vol. 63, 046604, 2001.
doi:10.1103/PhysRevE.63.046604

6. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 5514, 2001.
doi:10.1126/science.1058847

7. Eleftheriades, G. V., A. K. Iyer, and P. C. Kremer, "Planar negative refractive index media using periodically L-C loaded transmission lines," IEEE Trans. on Microwave Theory and Techniques, Vol. 50, 2702-2712, 2002.
doi:10.1109/TMTT.2002.805197

8. Eleftheriades, G. V., O. Siddiqui, and A. K. Iyer, "Transmission line models for negative refractive index media and associated implementations without excess resonators," IEEE Microwave and Wireless Components Lett., Vol. 13, 51-53, 2003.
doi:10.1109/LMWC.2003.808719

9. Nefedov, I. S. and S. A. Tretyakov, "Theoretical study of waveguiding structures containing backward-wave materials," CXXVII General Assembly of International Union of Radio Science (URSI GA'02), Paper No. 1074 in the CD digest, 2002.

10. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184

11. Simovski, C. R., P. A. Belov, and S. He, "Backward wave region and negative material parameters of a structure formed by lattices of wires and split-ring resonators," IEEE Trans. on Antennas and Propag., Vol. 51, 2582-2591, 2003.
doi:10.1109/TAP.2003.817554

12. Yang, X., Y.-J. Xie, R. Yang, and R.Wang, "Propagation features of H-guides with bianisostropic split ring resonator metamaterials," Progress In Electromagnetics Reasearch, Vol. 91, 333-348, 2009.
doi:10.2528/PIER09012501

13. Sanada, A., C. C. Caloz, and T. Itoh, "Planar distributed structures with negative refractive index," IEEE Trans. on Microwave Theory and Techniques, Vol. 52, 1252-1263, 2004.
doi:10.1109/TMTT.2004.825703

14. Caloz, C. C., A. Sanada, and T. Itoh, "A novel composite right-/left-handed coupled-line directional coupler with arbitrary coupling level and broad bandwidth," IEEE Trans. on Microwave Theory and Techniques, Vol. 52, 980-992, 2004.
doi:10.1109/TMTT.2004.823579

15. Caloz, C. C. and T. Itoh, "A novel mixed conventional microstrip and composite right/left-handed backward-wave directional coupler with broadband and tight coupling characteristics," IEEE Microwave and Wireless Components Lett., Vol. 14, 31-33, 2004.
doi:10.1109/LMWC.2003.821506

16. Studniberg, M. and G. V. Eleftheriades, "A dual-band bandpass filter based on generalized negative-refractive-index transmission-lines," IEEE Microwave and Wireless Components Lett., Vol. 19, No. 1, 18-20, 2009.
doi:10.1109/LMWC.2008.2008538

17. Selvanayagam, M. and G. V. Eleftheriades, "Negative-refractive-index transmission lines with expanded unit cells," IEEE Trans. on Antennas and Propag., Vol. 56, No. 11, 3592-3596, 2008.
doi:10.1109/TAP.2008.2005546

18. Simowski, C. R. and S. He, "Frequency range and explicit expressions for negative permittivity and permeability for an isotropic medium formed by a lattice of perfectly conducted particles," Phys. Rev. Lett., Vol. A311, 254-263, 2003.

19. Ahmadi, A. and H. Mosallaei, "All-Dielectric metamaterial: Double negative behavior and bandwidth-loss improvement," Proc. of IEEE Int. Symp. on Antennas and Propagation, 5527-5530, June 9-15, 2007.

20. Jylha, L., I. A. Kolmakov, S. Maslovski, and S. A. Tretyakov, "Modelling of isotropic backward-wave materials composed of resonant spheres," Journal of Appl. Phys., Vol. 99, 043102, 2006.
doi:10.1063/1.2173309

21. Vendik, O. G. and M. S. Gashinova, "Artificial double negative (DNG) media composed by two different dielectrics sphere lattices embedded in a dielectric matrix," Proc. of 34th European Microwave Conference-Amsterdam, 1209-1212, 2004.

22. Vendik, I., O. Vendik, I. Kolmakov, and M. Odit, "Modelling of isotropic double negative media for microwave applications," Opto-electronics Review, Vol. 14, No. 3, 179-186, 2006.
doi:10.2478/s11772-006-0023-z

23. Li, D., Y. Xie, J. Zhang, J. Li, and Z. Chen, "Multilayer filters with split-ring resonator metamaterials," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 10, 1420-1429, 2008.
doi:10.1163/156939308786348938

24. Sabah, C. and S. Uckun, "Multilayer system of Lorentz/Drude metamaterials with dielectric slabs and its application to electromagnetic filters," Progress In Electromagnetics Reasearch, Vol. 91, 349-364, 2009.
doi:10.2528/PIER09031306

25. Bellver-Cebreros, C. and M. Rodriguez-Danta, "Geometrical analysis of wave propagation in left-handed metamaterials, Part I," Progress In Electromagnetics Reasearch C, Vol. 4, 103-119, 2008.

26. Bellver-Cebreros, C. and M. Rodriguez-Danta, "Geometrical analysis of wave propagation in Left-Handed metamaterials, Part II," Progress In Electromagnetics Reasearch C, Vol. 4, 85-102, 2008.

27. Lewin, L., Theory of Waveguide, Newens-Bitterworth, London, 1975.

28. Siakavara, K. and J. N. Sahalos, "The discontinuity problem of a rectangular dielectric post in a rectangular waveguide," IEEE Trans. on Microwave Theory and Techniques, Vol. 39, No. 9, 1617-1622, 1991.
doi:10.1109/22.83838

29. Siakavara, K., "Modal analysis of the microwave frequency response and composite right-/left- handed (CRLH) operation of a rectangular waveguide loaded with DPS and DNG materials," Int. Journal of RF and Microwave Computer Aided Engineering, Vol. 17, No. 4, 435-445, 2007.
doi:10.1002/mmce.20243

30. Lewin, L., "The electrical constants of a material loaded with spherical particles ," Proc. Inst. Elec. Eng., Vol. 94, No. 3, 65-68, 1947.