Vol. 95
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-08-06
Path Loss Prediction for Low-Rise Buildings with Image Classification on 2-d Aerial Photographs
By
Progress In Electromagnetics Research, Vol. 95, 135-152, 2009
Abstract
This paper presents a radio wave propagation prediction method for low-rise buildings using 2-D aerial images taken from actual areas. The prediction procedure was done in three steps. Firstly, the images were classified in order to identify the objects by Color Temperature Properties with Maximum Likelihood Algorithm (CTP_MLA). The objects in the images consist of buildings, trees, roads, water and plain. These objects influence wave propagation highly. The MLA classification is a common supervised image segmentation technique in remote sensing domain. However it still needs human editing in case of classification errors. Secondly, the appropriate path loss models were selected to predict path loss. The original Xia path loss model was modified to include the effects of airy buildings and vegetation around the buildings. Finally, preliminary tests provide a better solution compared with measured path losses with the root mean square error (RMSE) and maximum relative error (MRE) of 3.47 and 0.16, respectively. Therefore, the positions for micro-cell base stations could be designed on a 2-D aerial map.
Citation
Supachai Phaiboon, and Pisit Phokharatkul, "Path Loss Prediction for Low-Rise Buildings with Image Classification on 2-d Aerial Photographs," Progress In Electromagnetics Research, Vol. 95, 135-152, 2009.
doi:10.2528/PIER09061101
References

1. Xia, H. H., "A simplified model for prediction path loss in urban and suburban environments," IEEE Trans. Veh. Technol., Vol. 46, No. 4, 1040-1046, Nov. 1997.
doi:10.1109/25.653077

2. Har, D., H. H. Xia, and H. L. Bertoni, "Path-loss prediction model for microcells," IEEE Trans. Veh. Technol., Vol. 48, No. 5, 1453-1462, Sep. 1999.
doi:10.1109/25.790520

3. Walfisch, J. and H. L. Bertoni, "A theoretical model of UHF propagation in urban environments," IEEE Trans. Ant. Prop., Vol. 36, No. 12, 1788-1796, 1988.
doi:10.1109/8.14401

4. Ikegami, F., S. Yoshida, T. Takeuchi, and M. Umehira, "Propagation factors controlling mean field strength on urban streets ," IEEE Trans. Ant. Prop., Vol. 32, 822-829, 1984.
doi:10.1109/TAP.1984.1143419

5. Oda, Y., K. Tsunekawa, and M. Hata, "Advanced LOS path loss model in microwave mobile communications," IEEE Trans. Veh. Technol., Vol. 49, 2121-2125, Nov. 2000.

6. Jiang, L. and S. Y. Tan, "A simple analytical path loss model for urban cellular communication systems," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 8, 1017-1032, 2004.
doi:10.1163/1569393042955405

7. Masui, H., T. Kobayashi, and M. Akaike, "Microwave path loss modeling in urban line-of-sight. Environments," IEEE J. Select. Areas Commun., Vol. 20, No. 6, 1151-1155, Aug. 2002.
doi:10.1109/JSAC.2002.801215

8. Durgin, G., T. S. Rappaport, and H. Xu, "Measurements and models for radio path loss and penetration loss in and around homes and trees at 5.85 GHz," IEEE Trans. on Commun., Vol. 46, No. 11, 1484-1485, Nov. 1998.
doi:10.1109/26.729393

9. Karlsson, A., R. E. Schuh, C. Bergljung, P. Karlsson, and N. Lowendahl, "The influence of trees on radio channels at frequencies of 3 and 5 GHz," VTC 2001 Fall. IEEE VTS 54th, Vol. 4, 2008-2012, Oct. 2001.

10. Torrico, S. A., H. L. Bertoni, and R. H. Lang, "Modeling tree effects on path loss in a residential environment," IEEE Trans. Ant. Prop., Vol. 46, No. 6, 872-880, Jun. 1998.
doi:10.1109/8.686776

11. Torrico, S. A. and R. H. Lang, "A simplified analytical model to predict the specific attenuation of a tree canopy," IEEE Trans. Veh. Technol., Vol. 56, No. 2, 696-703, Mar. 2007.
doi:10.1109/TVT.2007.891485

12. Meng, Y. S., Y. H. Lee, and B. C. Ng, "Measurement and characterization of a tropical foliage channel in VHF and UHF bands," 10th IEEE Singapore Inter. Conf. (ICCS 2006), 1-5, Oct. 2006.

13. Kurner, T. and A. Meier, "Prediction of outdoor-to-indoor coverage in urban areas at 1.8 GHz," IEEE J. on Selected Areas in Commun., Vol. 20, No. 3, 496-506, April. 2002.
doi:10.1109/49.995508

14. Teeranachaideekul, N., P. Phokharatkul, S. Ongwattanakul, B. Emaruchi, and S. Phaiboon, "A maximum likelihood method for the classification of aerial photographs," Proc. JCSSE2007, 254-259, May 2-4, 2007.

15. Perkins, T. C., "Remote sensing image classification and fusion for terrain reconstruction,", B.S.E.E., University of Louisville, 1999.

16. Lee, W. C. Y., "Estimate of local average power of a mobile radio signal," IEEE Trans. Veh. Technol., Vol. 34, No. 1, 22-27, Feb. 1985.
doi:10.1109/T-VT.1985.24030