Vol. 94

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2009-07-21

Simulated and Experimental Investigation of Microwave Imaging Using UWB

By Antonio Lazaro, David Girbau, and Ramon Villarino
Progress In Electromagnetics Research, Vol. 94, 263-280, 2009
doi:10.2528/PIER09061004

Abstract

Microwave breast tumour detection is a non-invasive technique that uses non ionizing radiation. Microwave imaging has the potential to achieve early detection of breast cancer due to the high specificity and the large difference in electrical properties of the malignant tissue when compared to normal breast tissue. This paper studies the feasibility of using UWB signals for breast imaging. Simulated results using Finite-Difference Time-Domain (FDTD) Method will be presented. A sensibility study of the variations in the breast relative dielectric permittivity and of the variations of the skin-surface contour is also provided. A working prototype for microwave imaging is developed using a conventional Vector Network Analyzer (VNA) with the time processing capability.

Citation


Antonio Lazaro, David Girbau, and Ramon Villarino, "Simulated and Experimental Investigation of Microwave Imaging Using UWB," Progress In Electromagnetics Research, Vol. 94, 263-280, 2009.
doi:10.2528/PIER09061004
http://jpier.org/PIER/pier.php?paper=09061004

References


    1. Fear, E. C., P. M. Meaney, and M. A. Stuchly, "Microwaves for breast cancer detection?," IEEE Potentials, Vol. 22, No. 1, 12-18, 2003.
    doi:10.1109/MP.2003.1180933

    2. Fear, E. C., J. Sill, and M. A. Stuchly, "Experimental feasibility study of confocal microwave imaging for breast tumour detection," IEEE Trans. Microwave Theory and Tech., Vol. 51, No. 3, 887-892, 2003.
    doi:10.1109/TMTT.2003.808630

    3. Hagl, D. M., D. Popovic, S. C. Hagness, J. H. Booske, and M. Okoniewski, "Sensing volume of open-ended coaxial probes for dielectric characterization of breast tissue at microwave frequencies," IEEE Trans. Microwave Theory and Tech., Vol. 51, No. 4, 1194-12096, 2003.
    doi:10.1109/TMTT.2003.809626

    4. Bindu, G., S. J. Abraham, A. Lonappan, V. Thomas, C. K. Aanandan, and K. T. Mathew, "Active microwave imaging for breast cancer detection," Progress In Electromagnetics Research, Vol. 58, 149-169, 2006.
    doi:10.2528/PIER05081802

    5. Zhang, H., S. Y. Tan, and H. S. Tan, "A novel method for microwave breast cancer detection," Progress In Electromagnetics Research, Vol. 83, 413-434, 2008.
    doi:10.2528/PIER08062701

    6. Bond, E. J., X. Li, S. C. Hagness, and B. D. Van Veen, "Microwave imaging via space-time beamforming for early detection of breast cancer," IEEE Trans. on Antennas and Propagation, Vol. 51, No. 8, 1690-1705, 2003.
    doi:10.1109/TAP.2003.815446

    7. Zainud-Deen, S. H., W. M. Hassen, E. M. Ali, K. H. Awadalla, and H. A. Sharshar, "Breast cancer detection using a hybrid finite di®erence frequency domain and particle swarm optimization techniques," Progress In Electromagnetics Research B, Vol. 3, 35-46, 2008.
    doi:10.2528/PIERB07112703

    8. Li, X., E. J. Bond, B. D. Van Veen, and S. C. Hagness, "An overview of ultra-wideband microwave imaging via space-time beamforming for early-stage breast-cancer detection," IEEE Antennas and Propagation Magazin, Vol. 47, No. 1, 19-34, 2005.
    doi:10.1109/MAP.2005.1436217

    9. Sill, J. M. and E. C. Fear, "Tissue sensing adaptive radar for breast cancer detection | Experimental investigation of simple tumor models," IEEE Trans. on Microwave Theory and Tech., Vol. 53, No. 11, 3312-3319, 2005.
    doi:10.1109/TMTT.2005.857330

    10. Zhou, H., T. Takenaka, J. Johnson, and T. Tanaka, "A breast imaging model using microwaves and a time domain three dimensional reconstruction method," Progress In Electromagnetics Research, Vol. 93, 57-70, 2009.
    doi:10.2528/PIER09033001

    11. Klemm, M., I. Craddock, J. Leendertz, A. Preece, and R. Benjamin, "Experimental and clinical results of breast cancer detection using UWB microwave radar," IEEE Antennas and Propagation Society International Symposium, AP-S 2008, 1-4, 2008.

    12. Craddock, I. J., M. Klemm, J. Leendertz, A. W. Preece, and R. Benjamin, "An improved hemispeherical antenna array design for breast imaging," Proceedings European Conference on Antennas and Propagation, EuCAP 2007, 1-5, 2007.

    13. Meaney, P. M., M. W. Fanning, D. Li, S. P. Poplack, and K. D. Paulsen, "A clinical prototype for active microwave imaging of the breast," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, No. 11, 1841-1853, 2000.
    doi:10.1109/22.883861

    14. Kanj, H. and M. Popovic, "A novel ultra-compact broadband antenna for microwave breast tumor detection," Progress In Electromagnetics Research, Vol. 86, 169-198, 2008.
    doi:10.2528/PIER08090701

    15. Amineh, R. K., A. Trehan, and N. K. Nikolova, "TEM horn antenna for ultra-wide band microwave breast imaging," Progress In Electromagnetics Research B, Vol. 13, 59-74, 2009.
    doi:10.2528/PIERB08122213

    16. Lim, K.-S., M. Nagalingam, and C.-P. Tan, "Design and construction of microstrip UWB antenna with time domain analysis," Progress In Electromagnetics Research M, Vol. 3, 153-164, 2008.
    doi:10.2528/PIERM08051903

    17. Klemm, M. and G. Troester, "EM energy absorption in the human body tissues due to UWB antennas," Progress In Electromagnetics Research, Vol. 62, 261-280, 2006.
    doi:10.2528/PIER06040601

    18. Li, X., S. K. Davis, S. C. Hagness, D. W. van der Weide, and B. D. Van Veen, "Microwave imaging via space time beamforming: Experimental investigation of tumor detection in multilayer breast phantoms," IEEE Trans. Microwave Theory and Tech., Vol. 52, 1856-1865, 2004.
    doi:10.1109/TMTT.2004.832686

    19. Bindu, G., A. Lonappan, V. Thomas, C. K. Aanandan, and K. T. Mathew, "Dielectric studies of corn syrup for applications in microwave breast imaging," Progress In Electromagnetics Research, Vol. 59, 175-186, 2006.
    doi:10.2528/PIER05072801

    20. Slaney, M. and A. C. Kak, "Limitations of imaging with first-order diffraction tomography," EEE Trans. Microwave Theory and Tech., Vol. 32, No. 8, 860-874, 1984.
    doi:10.1109/TMTT.1984.1132783

    21. Sakamoto, T. and T. Sato, "A target shape estimation algorithm for puse radar systems based on boundary scattering transform," IEICE Trans. Commun., Vol. E87-B, No. 5, 1357-1365, 2004.

    22. Golub, G. H. and C. F. Van Loan, "Matrix Computations," Johns Hopkins, 1996.

    23. GprMAX V2.0, avaliable in www.gprmax.org, .

    24. Zajíček, R., T. Smejkal, L. Oppl, and J. Vrba, "Medical diagnostics using reflection method and waveguide probes-feasibility study," PIERS Proceedings, 759-762, 2008.

    25. Zajíček, R., L. Oppl, and J. Vrba, "Broadband measurement of complex permittivity," Radioengineering, Vol. 17, No. 1, 14-19, 2008.