Vol. 94

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2009-07-25

A Millimeter-Wave Ultra-Wideband Four-Way Switch Filter Module Based on Novel Three-Line Microstrip Structure Band-Pass Filters

By Zhigang Wang, Qiuliang Lai, Rui-Min Xu, Bo Yan, Weigan Lin, and Yunnchuan Guo
Progress In Electromagnetics Research, Vol. 94, 297-309, 2009
doi:10.2528/PIER09060501

Abstract

This paper presents a millimeter-wave ultra-wideband four-way switch filter module integrating six building blocks including four band-pass filters and two switches. The switch filter module works at whole Ka-band (26-40 GHz) and consists of four wideband band-pass filters and two monolithic microwave integrated circuit (MMIC) single pole four throw (SP4T) switches. The four wideband band-pass filters are realized by a novel three-line microstrip structure band-pass filter. Compared with the traditional three-line filter, the proposed three-line filter not only retains virtues of traditional three-line filter, but also resolves drawbacks of it which include discontinuities between adjacent sections, many parameters of design, and no effective matching circuits at input/output ports. The proposed three-line filter is validated by electromagnetic simulation. The developed switch filter module is fabricated using hybrid integrated technology, which has a size of 64 mm×44 mm×7.5 mm. The fabricated switch filter module exhibits good performances: for four different states, the measured insertion loss and return loss are all better than 8.5 dB and 10 dB in each pass-band, respectively.

Citation


Zhigang Wang, Qiuliang Lai, Rui-Min Xu, Bo Yan, Weigan Lin, and Yunnchuan Guo, "A Millimeter-Wave Ultra-Wideband Four-Way Switch Filter Module Based on Novel Three-Line Microstrip Structure Band-Pass Filters," Progress In Electromagnetics Research, Vol. 94, 297-309, 2009.
doi:10.2528/PIER09060501
http://jpier.org/PIER/pier.php?paper=09060501

References


    1. Lim, K., S. Pinel, M. F. Davis, A. Sutono, C. H. Lee, D. Heo, A. Obatoynbo, J. Laskar, E. M. Tentzeris, and R. Tummala, "RF-system-on-package (SOP) for wireless communications," IEEE Microwave Mag., Vol. 3, No. 1, 88-99, 2002.
    doi:10.1109/MMW.2002.990700

    2. Bae, J. H., W. K. Choi, J. S. Kim, G. Y. Choi, and J. S. Chae, "Study on the demodulation structure of reader receiver in a passive RFID environment," Progress In Electromagnetics Research, Vol. 91, 243-258, 2009.
    doi:10.2528/PIER09021103

    3. Kim, J. H., Y. H. You, K. I. Lee, and J. H. Yi, "Pilot-less synchronization receiver for UWB-based wireless application," Progress In Electromagnetics Research, Vol. 83, 119-131, 2008.
    doi:10.2528/PIER08040202

    4. Chan, Y. K. K., B. K. Chung, and H. T. Chuah, "Transmitter and receiver design of an experimental airborne synthetic aperture radar sensor," Progress In Electromagnetics Research, Vol. 49, 203-218, 2004.
    doi:10.2528/PIER04031601

    5. Ma, T. G., C. J. Wu, and C. F. Chou, "An impulse-radio-based ultrawideband RF front-end module with a new multilayered microwave sampler," Progress In Electromagnetics Research, Vol. 86, 1-18, 2008.
    doi:10.2528/PIER08090501

    6. Li, S., S. L. Zheng, X. M. Zhang, and X. F. Jin, "A compact photonic microwave receiver integrated with dielectric resonator antenna," Journal of Electromagnetic Waves and Application, Vol. 22, No. 11--12, 1547-1555, 2008.
    doi:10.1163/156939308786390030

    7. E. G., M. N. Petsios, N. K. Uzunoglu, "Towards," Journal of Electromagnetic Waves and Application, Vol. 19, No. 15, 2015-2031, 2005.
    doi:10.1163/156939305775570512

    8. Zhao, X. and K. Huang, "Calculation of probability distribution of maximal received power of electronic receiver in lighting electromagnetic environment," Journal of Electromagnetic Waves and Application, Vol. 19, No. 2, 221-230, 2005.
    doi:10.1163/1569393054497357

    9. Jiang, B. T. and J. F. Mao, "A good performance design for integrating three antennas in a dual SIM mobile phone for GSM/DCS/bluetooth operations," Journal of Electromagnetic Waves and Application, Vol. 22, No. 14--15, 1943-1954, 2008.
    doi:10.1163/156939308787537892

    10. Chou, H. T., L. R. Kuo, and W. J. Liao, "Characteristic evaluation of an active patch antenna structure with an embedded LNA module for GPS reception," Journal of Electromagnetic Waves and Application, Vol. 21, No. 15, 599-614, 2007.
    doi:10.1163/156939307780667283

    11. Fakoukakis, F. E., S. G. Diamantis, A. P. Orfanides, and G. A. Kyriacou, "Development of an adaptive and a switched beam smart antenna system for wireless communication," Journal of Electromagnetic Waves and Application, Vol. 20, No. 3, 399-408, 2006.
    doi:10.1163/156939306775701722

    12. Wang, Z. G., P. Li, R. M. Xu, and W.G. Lin, "A compact X-band receiver front-end module based on low temperature Co-fired ceramic technology," Progress In Electromagnetics Research, Vol. 92, 167-180, 2009.
    doi:10.2528/PIER09040701

    13. Hong, J. S. and M. J. Lancaster, "Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters," IEEE Trans. Microw. Theory Tech., Vol. 44, No. 11, 2099-2109, 1996.
    doi:10.1109/22.543968

    14. Shih, Y. C. and T. Itoh, "E-plane filters with finite-thickness septa," IEEE Trans. Microw. Theory Tech., Vol. 31, No. 12, 1009-1013, 1983.
    doi:10.1109/TMTT.1983.1131653

    15. Ito, M., K. Maruhashi, K. Ikuina, T. Hashiguchi, S. Iwanaga, and K. Ohata, "A 60-GHz-band planar dielectric waveguide filter for frip-chip modules," IEEE Trans. Microw. Theory Tech., Vol. 49, No. 12, 2431-2436, 2001.
    doi:10.1109/22.971632

    16. Yeung, L. K. and K. L. Wu, "A compact second-order LTCC bandpass filter with two finite transmission zeros," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 2, 337-341, 2003.
    doi:10.1109/TMTT.2002.807846

    17. Hong, J. S. and S. Li, "Theory and experiment of dual-Mode microstrip triangular patch resonators and filters," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 4, 1237-1248, 2004.
    doi:10.1109/TMTT.2004.825653

    18. Chang, C. Y. and T. Itoh, "A modified parallel-coupled filter structure that improve the upper stopband rejection and response symmetry," IEEE Trans. Microw. Theory Tech., Vol. 39, No. 2, 310-314, 1991.
    doi:10.1109/22.102975

    20. Schwindt, R. and C. Nguyen, "Spectral domain analysis of three symmetric coupled lines and application to a new bandpass filter," IEEE Trans. Microw. Theory Tech., Vol. 42, No. 7, 1183-1189, 1994.
    doi:10.1109/22.299755

    21. Kuo, J. T. and E. Shih, "Wideband bandpass filter design with three-line microstrip structures,", Vol. 149, No. 56, 246, October/December, 2002.

    22. Kuo, J. T., "Accurate quasi-TEM spectral domain analysis of single and multiple coupled microstrip lines of arbitrary metallization thickness," IEEE Trans. Microw. Theory Tech., Vol. 43, No. 8, 1881-1888, 1995.
    doi:10.1109/22.402277

    23. Paul, C. R., Analysis of Multiconductor Transmission Lines, John Wiley & Sons, New York, 1994.

    24. Lin, F. L., C. W. Chiu, and R. B. Wu, "Coplanar waveguide bandpass filter-a ribbon-of-brick-wall design," IEEE Trans. Microw. Theory Tech., Vol. 43, No. 7, 1589-1596, 1995.
    doi:10.1109/22.392919

    25. Hong, J. S. and M. J. Lancaster, Mircrostrip Filters for RF/Microwave Applications, Wiley, New York, 2001.