Vol. 92
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-04-28
A Compact X-Band Receiver Front-End Module Based on Low Temperature Co-Fired Ceramic Technology
By
Progress In Electromagnetics Research, Vol. 92, 167-180, 2009
Abstract
This letter presents a compact low temperature co-fired ceramic (LTCC) receiver front-end module integrating 9 building blocks. The receiver is a twicefrequency- conversion front-end module with image injection, works at X-band, consists of an X-band embedded image injection band-pass filter (BPF), an L-band multilayer image injection quasi-ellipitc BPF, two monolithic microwave integrated circuit (MMIC) low noise amplifiers (LNAs), two intermediate frequency (IF) amplifiers, two mixers, a IF BPF, and some lumped passive components. All MMICs are mounted into pre-making cavities in the three layers LTCC substrate of the top surface, and the interconnection between MMICs and surface microstrip-line is established by bond wires. A multilayer five-pole Chebyshev interdigital BPF is developed as the first image injection filter, and a four-pole quasi-elliptic BPF composed of stepped-impedance hairpin resonator and miniaturized hairpin resonators that can be coupled through the apertures on the common ground plane is proposed for as the second image injection filter. The developed X-band receiver front-end module is fabricated using twenty layers LTCC dielectric substrate, which has a compact size of 30 × 20 × 20 mm3 (including the metal cavity). The measured receiver gain and noise figure are more than 32 dB and less than 4 dB, respectively. The first and second image injection is better than 28 dB and 40 dB, respectively.
Citation
Zhigang Wang, Ping Li, Rui-Min Xu, and Weigan Lin, "A Compact X-Band Receiver Front-End Module Based on Low Temperature Co-Fired Ceramic Technology," Progress In Electromagnetics Research, Vol. 92, 167-180, 2009.
doi:10.2528/PIER09040701
References

1. Lim, K., S. Pinel, M. F. Davis, A. Sutono, C. H. Lee, D. Heo, A. Obatoynbo, J. Laskar, E. M. Tentzeris, and R. Tummala, "RF-system-on-package (SOP) for wireless communications," IEEE Microwave Mag., Vol. 3, No. 1, 88-99, March 2002.
doi:10.1109/MMW.2002.990700

2. Bae, J. H., W. K. Choi, J. S. Kim, G. Y. Choi, and J. S. Chae, "Study on the demodulation structure of reader receiver in a passive RFID environment," Progress In Electromagnetics Research, PIER 91, 243-258, 2009.

3. Kim, J. H., Y. H. You, K. I. Lee, and J. H. Yi, "Pilot-less synchronization receiver for UWB-based wireless application," Progress In Electromagnetics Research, PIER 83, 119-131, 2008.

4. Chan, Y. K. K., , B. K. Chung, and H. T. Chuah, "Transmitter and receiver design of an experimental airborne synthetic aperture radar sensor," Progress In Electromagnetics Research, PIER 49, 203-218, 2004.

5. Ma, T. G., C. J. Wu, and C.-F. Chou, "An impulse-radio-based ultrawideband RF front-end module with a new multilayered microwave sampler," Progress In Electromagnetics Research, PIER 86, 1-18, 2008.

6. Li, S., S. L. Zheng, X. M. Zhang, and X. F. Jin, "A compact photonic microwave receiver integrated with dielectric resonator antenna," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 11-12, 1547-1555, 2008.
doi:10.1163/156939308786390030

7. Alivizatos, E. G., M. N. Petsios, and N. K. Uzunoglu, "Towards a range-doppler UHF multistatic radar for the detection of noncooperative targets with low RCS," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 15, 2015-2031, 2005.
doi:10.1163/156939305775570512

8. Wang, G. Q., M. Van, F. Barlow, and A. Elshabini, "An interdigital bandpass filter embedded in LTCC for 5GHz wireless LAN applications," IEEE Microw. Wireless Compon. Lett., Vol. 15, No. 5, 357-359, May 2005.
doi:10.1109/LMWC.2005.847711

9. Yeung, L. K. and K. L. Wu, "A compact second-order LTCC bandpassfilter with two finite transmission zeros," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 2, 337-341, February 2003.
doi:10.1109/TMTT.2002.807846

10. Lee, J. H., N. Kidera, G. DeJean, S. Pinel, J. Laskar, and M. M. Tentzeris, "A v-band front-end with 3-D integrated cavity filters/duplexers and antenna in LTCC technologies," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 7, 2925-2937, July 2006.

11. Lee, C. H., A. Sutono, S. Han, K. Lim, S. Pinel, J. Laskar, and E. M. Tentzeris, IEEE Trans. Adv. Packag., Vol. 25, No. 3, 374-384, August 2002.
doi:10.1109/TADVP.2002.805315

12. Yeung, L. K., J. Wang, Y. Huang, S. C. Lee, and K. L. Wu, "A compact LTCC Bluetooth system module with an integrated antenna," Int. J. RF Microw. Comput. Aided Eng., Vol. 16, No. 3, 238-244, February 2006.
doi:10.1002/mmce.20147

13. Ko, Y. J., J. Y. Park, J. H. Ryu, K. H. Lee, and J. U. Bu, "A miniaturized LTCC multi-layered front-end module for dual band WLAN (802.11a/b/g) applications," IEEE MTT-S Int. Microw. Symp. Dig., 563-566, June 2004.

14. Weng, C. C., C. F. Chang, and S. J. Chung, "Development of a compact low- remperature co-fired ceramic antenna front-end module," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 11, 2483-2492, November 2008.
doi:10.1109/TMTT.2008.2005889

15. Baras, T. and A. F. Jacob, "Integrated LTCC synthesizer and signal converter modules at K-band," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 1, 71-79, January 2009.
doi:10.1109/TMTT.2008.2008940

16. Hong, J. S and M. J. Lancaster, Mircrostrip Filters for RF/Microwave Applications, Wiley, New York, 2001.

17. Hong, J. S. and M. J. Lancaster, "Theory and experiment of novel microstrip slow-wave open-loop resonator filters," IEEE Trans. Microw. Theory Tech., Vol. 45, No. 12, 2358-2365, December 1997.
doi:10.1109/22.643844

18. Sagawa, M., K. Takahashi, and M. Makimoto, "Miniaturized hairpin resonator filters and their application receiver front-end MIC's," IEEE Trans. Microw. Theory Tech., Vol. 37, No. 12, 1991-1997, November 1989.
doi:10.1109/22.44113

19. Djaiz, A. and T. A. Denidni, "A new compact microstrip two-layer bandpass filter using aperture-coupled SIR-hairpin resonators with transmission zeros," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 5, 1929-1936, May 2006.
doi:10.1109/TMTT.2006.872797

20. Kuo, J. T. and E. Shih, "Microstrip stepped impedance resonators bandpass filter with an extended optimal rejection bandwidth," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 5, 1554-1559, May 2003.
doi:10.1109/TMTT.2003.810138

21. Levy, R., "Filters with single transmission zeros at real or imaginary frequencies ," IEEE Trans. Microw. Theory Tech., Vol. 24, No. 4, 172-181, April 1976.
doi:10.1109/TMTT.1976.1128811

22. Zhao, X. and K. Huang, "Calculation of probability distribution of maximal received power of electronic receiver in lighting electromagnetic environment," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 2, 221-230, 2005.
doi:10.1163/1569393054497357

23. Guo, Y. and R. Xu, "Ultra-wideband power splitting/combining technique using zero-degree left-handed transmission lines," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 8, 1109-1118, 2007.

24. Jiang, B. T. and J. F. Mao, "A good performance design for integrating three antennas in a dual SIM mobile phone for GSM/DCS/Bluetooth operations," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 14-15, 1943-1954, 2008.
doi:10.1163/156939308787537892

25. Guo, Y. and R. Xu, "Planar metamaterials supporting multiple left-handed modes," Progress In Electromagnetics Research, 239-251, PIER 66, 2006.

26. Chou, H. T., L. R. Kuo, and W. J. Liao, "Characteristic evaluation of an active patch antenna structure with an embedded LNA module for GPS reception," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 599-614, 2007.
doi:10.1163/156939307780667283

27. Guo, Y., Y. Xu, L. Xia, and R. Xu, "Efficient optimization of a Ka-band branch waveguide power divider," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 1, 17-26, 2008.
doi:10.1163/156939308783122698

28. Fakoukakis, F. E., S. G. Diamantis, A. P. Orfanides, and G. A. Kyriacou, "Development of an adaptive and a switched beam smart antenna system for wireless communication," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 3, 399-408, 2006.
doi:10.1163/156939306775701722