Vol. 95
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-08-04
Time Domain Physical Optics for the Higher-Order FDTD Modeling in Electromagnetic Scattering from 3-d Complex and Combined Multiple Materials Objects
By
Progress In Electromagnetics Research, Vol. 95, 87-102, 2009
Abstract
This paper proposes a hybrid methodology that combines an extended form of Finite-Deference Time-Domain (FDTD) method with Time Domain Physical Optics (TDPO) for analysis of 3-D scattering of combinative objects in complex electromagnetic compatibility (EMC) problems. Establishing a covariant formulation for FDTD, the extended algorithm introduces a parametric topology of accurate nonstandard schemes for the non-orthogonal div-curl problem and the suppression of lattice dispersion. For complex-combined objects including a small size (SS) and large size (LS) parts, using TDPO is an appropriate approach for coupling between two regions. Thus our technique solves the EMC complexity with the help of higher order FDTD (HOFDTD) and the combinatory structures by using of the TDPO. Numerical validation confirms the superiority of the proposed algorithm via realistic EMC applications.
Citation
Faramarz Faghihi, and Hossein Heydari, "Time Domain Physical Optics for the Higher-Order FDTD Modeling in Electromagnetic Scattering from 3-d Complex and Combined Multiple Materials Objects," Progress In Electromagnetics Research, Vol. 95, 87-102, 2009.
doi:10.2528/PIER09040407
References

1. Liu, J. J., "On uniqueness and linearization of an inverse electromagnetic scattering problem," Applied Mathematics and Computation, Vol. 171, 406-419, 2005.
doi:10.1016/j.amc.2005.01.045

2. Rokhlin, V., "Rapid solution of integral equations of scattering theory in two dimensions ," Journal of Computational Physics, Vol. 86, 414-439, 1990.
doi:10.1016/0021-9991(90)90107-C

3. Liu, J. and J. M. Jin, "A highly effective preconditioner for solving the finite element-boundary integral matrix equation of 3-D scattering," IEEE Trans. on Antennas and Propagat., Vol. 50, 1212-1221, 2002.
doi:10.1109/TAP.2002.801377

4. Liu, J. and J. M. Jin, "A novel hybridization of higher order finite element and boundary integral methods for electromagnetic scattering and radiation problems," IEEE Trans. on Antennas and Propagat., Vol. 49, 1794-1806, 2001.
doi:10.1109/8.982462

5. Taflove, A. and S. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 2 Ed., Artech House, Boston, 2000.

6. Young, J. L., D. V. Gaitonde, and J. S. Shang, "Toward the construction of a fourth-order difference scheme for transient EM wave simulation: Staggered grid approach," IEEE Trans. on Antennas and Propagat., Vol. 45, 1573-1580, 1997.
doi:10.1109/8.650067

7. Kashiwa, T., H. Kudo, Y. Sendo, T. Ohtani, and Y. Kanai, "The phase velocity error and stability condition of three-dimensional nonstandard FDTD method ," IEEE Trans. Magn., Vol. 38, 661-664, 2002.
doi:10.1109/20.996172

8. Nikolaos, V., N. V. Kantartzis, T. D. Tsiboukis, and E. E. Kriezis, "A topologically consistent class of 3-D higher order curvilinear FDTD schemes for dispersion-optimized EMC and material modeling," Journal of Materials Processing Technology, Vol. 161, 210-217, 2005.
doi:10.1016/j.jmatprotec.2004.07.027

9. Wang, M. Y., J. Xu, J. Wu, Y. B. Yan, and H. L. Li, "FDTD study on scattering of metallic column covered by double-negative metamaterial," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 14, 1905-1914, 2007.
doi:10.1163/156939307783152777

10. Li, Y.-L., M.-J. Wang, and G.-F. Tang, "The scattering from an elliptic cylinder irradiated by an electromagnetic wave with arbitrary direction and polarization," Progress In Electromagnetics Research Letters, Vol. 5, 137-149, 2008.
doi:10.2528/PIERL08111904

11. Hillairet, J., J. Sokoloff, and S. Bolioli, "Electromagnetic scattering of a field known on a curved interface using conformal Gaussian beams," Progress In Electromagnetics Research B, Vol. 8, 195-212, 2008.
doi:10.2528/PIERB08062603

12. Valagiannopoulos, C. A., "Electromagnetic scattering from two eccentric metamaterial cylinders with frequency-dependent permittivities differing slightly each other," Progress In Electromagnetics Research B, Vol. 3, 23-34, 2008.
doi:10.2528/PIERB07112906

13. Sun, X. and H. Ha, "Light scattering by large hexagonal column with multiple densely packed inclusions," Progress In Electromagnetics Research Letters, Vol. 3, 105-112, 2008.
doi:10.2528/PIERL08021804

14. Hamid, A.-K. and F. R. Cooray, "Scattering by a perfect electromagnetic conducting elliptic cylinder," Progress In Electromagnetics Research Letters, Vol. 10, 59-67, 2009.

15. Fan, Z., D.-Z. Ding, and R.-S. Chen, "The efficient analysis of electromagnetic scattering from composite structures using hybrid Cfie-Iefie ," Progress In Electromagnetics Research B, Vol. 10, 131-143, 2008.
doi:10.2528/PIERB08091606

16. Hua, Y., Q. Z. Liu, Y. L. Zou, and L. Sun, "A hybrid FE-BI method for electromagnetic scattering from dielectric bodies partially covered by conductors," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 2-3, 423-430, 2008.
doi:10.1163/156939308784160802

17. Wang, R. and L. Guo, "Numerical simulations wave scattering from two-layered rough interface," Progress In Electromagnetics Research B, Vol. 10, 163-175, 2008.
doi:10.2528/PIERB08082903

18. Huang, T., Y. Zhang, L. Li, W. Shao, and S.-J. Lai, "Modified incomplete Cholesky factorization for solving electromagnetic scattering problems ," Progress In Electromagnetics Research B, Vol. 13, 41-58, 2009.
doi:10.2528/PIERB08112407

19. Wang, Y., K. C. Sujeet, and S. N. Safieddin, "An FDTD/raytracing analysis method for wave penetration through inhomogeneous walls," IEEE Trans. on Antennas and Propagat., Vol. 50, 1598-1604, 2002.
doi:10.1109/TAP.2002.802157

20. Nie, X.-C., Y.-B. Gan, N. Yuan, C.-F. Wang, and L.-W. Li, "An efficient hybrid method for analysis of slot arrays enclosed by a large radome," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 2, 249-264, 2006.
doi:10.1163/156939306775777215

21. Sun, E.-Y. and W. V. T. Rusch, "Time-domain physical-optics," IEEE Trans. on Antennas and Propagat., Vol. 42, 9-15, 1994.

22. Yang, L.-X., D.-B. Ge, and B. Wei, "FDTD/TDPO hybrid approach for analysis of the EM scattering of combinative objects ," Progress In Electromagnetics Research, Vol. 76, 275-284, 2007.
doi:10.2528/PIER07071206

23. Kantartzis, N. V. and T. D. Tsiboukis, "A higher order nonstandard FDTD-PML method for the advanced modeling of complex EMC problems in generalized 3-D curvilinear coordinates," IEEE Transaction Electromagnetic Compatibility, Vol. 46, 2-8, 2004.
doi:10.1109/TEMC.2004.823606

24. Zygiridis, T. T. and T. D. Tsiboukis, "Optimized three-dimensional FDTD discretizations of Maxwell's equations on Cartesian grids," Journal of Computational Physics, Vol. 226, 2372-2388, 2007.
doi:10.1016/j.jcp.2007.07.008

25. Nikolaos, V. K. and T. D. Tsiboukis, "Rigorous ADI-FDTD analysis of left-handed metamaterials in optimally-designed EMC applications," COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 25, 667-690, 2006.

26. Petropoulos, P. G., L. P. Zhao, and A. C. Cangellaris, "A reflectionless sponge layer absorbing boundary condition for the solution of Maxwell's equations with high-order staggered finite differences," Journal of Computational Physics, Vol. 139, 184-208, 1998.
doi:10.1006/jcph.1997.5855

27. Lee, J.-F., R. Palendech, and R. Mittra, "Modeling three-dimensional discontinuities in waveguides using the non-orthogonal FDTD algorithm," IEEE Trans. Microwave Theory Tech., Vol. 40, 346-352, 1992.
doi:10.1109/22.120108

28. Rao, S. M. and D. R. Wilton, "E-field, H-field, and combined field solution for arbitrarily shaped three-dimensional dielectric bodies," Electromagn., Vol. 10, 407-421, 1990.
doi:10.1080/02726349008908254

29. Jiao, D., A. A. Ergin, B. Shanker, E. Michielssen, and J. M. Jin, "A fast higher-order time-domain finite element-boundary integral method for 3-D electromagnetic scattering analysis," IEEE Trans. on Antennas and Propagat., Vol. 50, 1192-1202, 2002.
doi:10.1109/TAP.2002.801375

30. McCowen, A., A. J. Radcliffe, and M. S. Towers, "Time-domain modeling of scattering from arbitrary cylinders in two dimensions using a hybrid finite-element and integral equation method," IEEE Trans. Magn., Vol. 39, 1227-1229, 2003.
doi:10.1109/TMAG.2003.810501

31. Ramahi, O. M., "Near- and far-field calculations in FDTD simulations using Kirchhoff surface integral representation," IEEE Trans. on Antennas and Propagat., Vol. 45, 753-759, 1997.
doi:10.1109/8.575616

32. Costanzo, S. and G. D. Massa, "Near-field to far-field transformation with planar spiral scanning," Progress In Electromagnetics Research, Vol. 73, 49-59, 2007.
doi:10.2528/PIER07031903